Manual:IP/IPsec: Difference between revisions

From MikroTik Wiki
Jump to navigation Jump to search
Emilsz (talk | contribs)
No edit summary
 
(39 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Versions | v6.0 +}}
{{Versions | v6.0 +}}
{{Warning | Article is migrated to our new manual: https://help.mikrotik.com/docs/display/ROS/IPsec }}


==Summary==
==Summary==
Line 232: Line 234:
<!-- AES-CTR --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>  
<!-- AES-CTR --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>  
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr>   
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr>   
<tr><td>[https://mikrotik.com/product/netmetal_ac2 RBD23UGS-5HPacD2HnD-NM (NetMetal ac²)] *</td>
<!-- DES and 3DES --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CBC --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CTR --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr>
<tr><td>[https://mikrotik.com/product/audience RBD25G-5HPacQD2HPnD (Audience)] *</td>
<!-- DES and 3DES --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CBC --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CTR --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr>
<tr><td>[https://mikrotik.com/product/audience_lte6_kit RBD25GR-5HPacQD2HPnD&R11e-LTE6 (Audience LTE6 kit)] *</td>
<!-- DES and 3DES --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CBC --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CTR --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr>


<tr><td>[https://mikrotik.com/product/hap_ac2 RBD52G-5HacD2HnD (hAP ac<sup>2</sup>)] *</td>
<tr><td>[https://mikrotik.com/product/hap_ac2 RBD52G-5HacD2HnD (hAP ac<sup>2</sup>)] *</td>
Line 238: Line 258:
<!-- AES-CTR --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>  
<!-- AES-CTR --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>  
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr>   
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr>   
<tr><td>[https://mikrotik.com/product/hap_ac3_lte6_kit RBD53GR-5HacD2HnD&R11e-LTE6 (hAP ac<sup>3</sup> LTE6 kit)] *</td>
<!-- DES and 3DES --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CBC --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CTR --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr> 
<tr><td>[https://mikrotik.com/product/chateau_lte12 RBD53G-5HacD2HnD-TC&EG12-EA (Chateau LTE12)] *</td>
<!-- DES and 3DES --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CBC --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CTR --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr>


<tr><td>[https://mikrotik.com/product/disc_lite5_ac RBDiscG-5acD (DISC Lite5 ac)] *</td>
<tr><td>[https://mikrotik.com/product/disc_lite5_ac RBDiscG-5acD (DISC Lite5 ac)] *</td>
Line 256: Line 288:
<!-- AES-CTR --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>  
<!-- AES-CTR --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>  
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr>   
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr>   
<tr><td>[https://mikrotik.com/product/lhg_xl_52_ac RBLHGG-5HPacD2HPnD-XL (LHG XL 52 ac)] *</td>
<!-- DES and 3DES --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CBC --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CTR --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr>


<tr><td>[https://mikrotik.com/product/lhg_xl_5_ac RBLHGG-5acD-XL (LHG XL 5 ac)] *</td>
<tr><td>[https://mikrotik.com/product/lhg_xl_5_ac RBLHGG-5acD-XL (LHG XL 5 ac)] *</td>
Line 269: Line 307:
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr>   
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr>   


<tr><td>[https://mikrotik.com/product/m11g RBM11G] ****</td>
<tr><td>[https://mikrotik.com/product/ltap RBLtAP-2HnD (LtAP)] ****</td>
<!-- DES and 3DES --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- DES and 3DES --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CBC --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CBC --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
Line 275: Line 313:
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr>   
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr>   


<tr><td>[https://mikrotik.com/product/rbm33g RBM33G] ****</td>
<tr><td>[https://mikrotik.com/product/ltap_lte_kit RBLtAP-2HnD&R11e-LTE (LtAP LTE kit)] ****</td>
<!-- DES and 3DES --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- DES and 3DES --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CBC --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CBC --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
Line 281: Line 319:
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr>   
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr>   


<tr><td>[https://mikrotik.com/product/sxtsq_5_ac RBSXTsqG-5acD (SXTsq 5 ac)] *</td>
<tr><td>[https://mikrotik.com/product/ltap_4g_kit RBLtAP-2HnD&R11e-4G (LtAP 4G kit)] ****</td>
<!-- DES and 3DES --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- DES and 3DES --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CBC --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>  
<!-- AES-CBC --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CTR --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>  
<!-- AES-CTR --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td>
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr> 
 
<tr><td>[https://mikrotik.com/product/ltap_lte6_kit RBLtAP-2HnD&R11e-LTE6 (LtAP LTE6 kit)] ****</td>
<!-- DES and 3DES --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CBC --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CTR --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td>
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr> 
 
<tr><td>[https://mikrotik.com/product/m11g RBM11G] ****</td>
<!-- DES and 3DES --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CBC --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CTR --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td>
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr> 
 
<tr><td>[https://mikrotik.com/product/rbm33g RBM33G] ****</td>
<!-- DES and 3DES --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CBC --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CTR --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td>
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr> 
 
<tr><td>[https://mikrotik.com/product/sxtsq_5_ac RBSXTsqG-5acD (SXTsq 5 ac)] *</td>
<!-- DES and 3DES --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CBC --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>  
<!-- AES-CTR --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>  
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr>   
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr>   


Line 299: Line 361:
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr>   
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr>   


<tr><td>[https://mikrotik.com/product/rb450gx4 RB450Gx4] *</td>
<tr><td>[https://mikrotik.com/product/wap_r_ac RBwAPGR-5HacD2HnD (wAP R ac)] *</td>
<!-- DES and 3DES --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- DES and 3DES --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CBC --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>  
<!-- AES-CBC --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>  
Line 305: Line 367:
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr>   
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr>   


<tr><td>[https://mikrotik.com/product/RB750Gr3 RB750Gr3 (hEX)] ****</td>
<tr><td>[https://mikrotik.com/product/wap_ac_lte_kit RBwAPGR-5HacD2HnD&R11e-LTE (wAP ac LTE kit)] *</td>
<!-- DES and 3DES --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- DES and 3DES --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CBC --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CBC --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>  
<!-- AES-CTR --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td>  
<!-- AES-CTR --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>  
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr>   
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr>   


<tr><td>[https://mikrotik.com/product/hex_s RB760iGS (hEX S)] ****</td>
<tr><td>[https://mikrotik.com/product/wap_ac_4g_kit RBwAPGR-5HacD2HnD&R11e-4G (wAP ac 4G kit)] *</td>
<!-- DES and 3DES --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CBC --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CTR --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr> 
 
<tr><td>[https://mikrotik.com/product/wap_ac_lte6_kit RBwAPGR-5HacD2HnD&R11e-LTE6 (wAP ac LTE6 kit)] *</td>
<!-- DES and 3DES --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CBC --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CTR --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr> 
 
<tr><td>[https://mikrotik.com/product/rb450gx4 RB450Gx4] *</td>
<!-- DES and 3DES --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CBC --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CTR --><td style="background-color:lightpink">no</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr> 
 
<tr><td>[https://mikrotik.com/product/RB750Gr3 RB750Gr3 (hEX)] ****</td>
<!-- DES and 3DES --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CBC --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CTR --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td>
<!-- AES-GCM --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td></tr> 
 
<tr><td>[https://mikrotik.com/product/hex_s RB760iGS (hEX S)] ****</td>
<!-- DES and 3DES --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- DES and 3DES --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CBC --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CBC --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
Line 324: Line 410:


<tr><td>[https://mikrotik.com/product/RB1100AHx2 RB1100AHx2]</td>
<tr><td>[https://mikrotik.com/product/RB1100AHx2 RB1100AHx2]</td>
<!-- DES and 3DES --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td>
<!-- DES and 3DES --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightpink">no</td>
<!-- AES-CBC --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td>
<!-- AES-CBC --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td>
<!-- AES-CTR --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td>  
<!-- AES-CTR --><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td><td style="background-color:lightpink">no</td>  
Line 348: Line 434:


<tr><td>[https://mikrotik.com/product/rb4011igs_rm RB4011iGS+RM] and [https://mikrotik.com/product/rb4011igs_5hacq2hnd_in RB4011iGS+5HacQ2HnD-IN]</td>
<tr><td>[https://mikrotik.com/product/rb4011igs_rm RB4011iGS+RM] and [https://mikrotik.com/product/rb4011igs_5hacq2hnd_in RB4011iGS+5HacQ2HnD-IN]</td>
<!-- DES and 3DES --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td>
<!-- AES-CBC --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td>
<!-- AES-CTR --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td>
<!-- AES-GCM --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td></tr>
<tr><td>[https://mikrotik.com/product/ccr2004_1g_12s_2xs CCR2004-1G-12S+2XS]</td>
<!-- DES and 3DES --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td>
<!-- DES and 3DES --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td>
<!-- AES-CBC --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td>
<!-- AES-CBC --><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td><td style="background-color:lightgreen">yes</td>
Line 418: Line 510:
|type=IP/IPv6 prefix
|type=IP/IPv6 prefix
|default=0.0.0.0/32
|default=0.0.0.0/32
|desc=Destination address to be matched in packets.
|desc=Destination address to be matched in packets. Applicable when tunnel mode (<var>tunnel=yes</var>) or template (<var>template=yes</var>) is used.
}}
}}


Line 451: Line 543:
* <var>require</var> - drop packet and acquire SA;
* <var>require</var> - drop packet and acquire SA;
* <var>unique</var> - drop packet and acquire a unique SA that is only used with this particular policy. It is used in setups where multiple clients can sit behind one public IP address (clients behind NAT).
* <var>unique</var> - drop packet and acquire a unique SA that is only used with this particular policy. It is used in setups where multiple clients can sit behind one public IP address (clients behind NAT).
}}
{{Mr-arg-table
|arg=peer
|type=string
|default=
|desc=Name of the [[#Peers | peer]] on which the policy applies.
}}
}}


Line 457: Line 556:
|type=string
|type=string
|default=default
|default=default
|desc=Name of the [[#Policy_Proposals|proposal template]] that will be sent by IKE daemon to establish SAs for this policy.
|desc=Name of the [[#Proposals| proposal template]] that will be sent by IKE daemon to establish SAs for this policy.
}}
}}


Line 468: Line 567:


{{Mr-arg-table
{{Mr-arg-table
|arg=sa-dst-address
|arg=src-address
|type=ip/ipv6 address
|default=::
|desc=SA destination IP/IPv6 address (remote peer).
}}
 
{{Mr-arg-table
|arg=sa-src-address
|type=ip/ipv6 address
|default=::
|desc=SA source IP/IPv6 address (local peer).
}}
 
{{Mr-arg-table
|arg=src-address
|type=ip/ipv6 prefix
|type=ip/ipv6 prefix
|default=0.0.0.0/32
|default=0.0.0.0/32
|desc=Source address to be matched in packets.
|desc=Source address to be matched in packets. Applicable when tunnel mode (<var>tunnel=yes</var>) or template (<var>template=yes</var>) is used.
}}
}}


Line 559: Line 644:
}}
}}


{{Mr-arg-ro-table-end
{{Mr-arg-table
|arg=priority
|arg=sa-dst-address
|type=
|type=ip/ipv6 address
|desc=Shows kernel priority.
|default=::
|desc=SA destination IP/IPv6 address (remote peer).
}}
 
{{Mr-arg-table-end
|arg=sa-src-address
|type=ip/ipv6 address
|default=::
|desc=SA source IP/IPv6 address (local peer).
}}
}}


Line 742: Line 835:
}}
}}


==Policy Proposals==
==Proposals==
<p id="shbox"><b>Sub-menu:</b> <code>/ip ipsec proposal</code></p>
<p id="shbox"><b>Sub-menu:</b> <code>/ip ipsec proposal</code></p>


Line 870: Line 963:


{{Mr-arg-table
{{Mr-arg-table
|arg=auth-method
|arg=comment
|type=eap-radius {{!}} pre-shared-key {{!}} pre-shared-key-xauth {{!}} rsa-signature {{!}} rsa-key {{!}} rsa-signature-hybrid
|type=string
|default=pre-shared-key
|default=
|desc=Authentication method:
* <var>eap-radius</var> - IKEv2 EAP RADIUS passthrough authentication for responder (RFC 3579). Server certificate in this case is required. If server certificate is not specified then only clients supporting EAP-only (RFC 5998) will be able to connect. Note that EAP method should be compatible with EAP-only.
* <var>pre-shared-key</var> - authenticate by a password (secret) string shared between the peers (not recommended since Offline attack on PSK is possible)
* <var>rsa-signature</var> - authenticate using a pair of RSA certificates
* <var>rsa-key</var> - authenticate using a RSA key imported in [[#Keys | Ipsec key]] menu.
* <var>pre-shared-key-xauth</var> - mutual PSK authentication + xauth username/password. <var>passive</var> parameter identifies server/client side
* <var>rsa-signature-hybrid</var> - responder certificate authentication with initiator Xauth. <var>passive</var> parameter identifies server/client side
 
}}
 
{{Mr-arg-table
|arg=certificate
|type=string
|default=
|desc=Name of a certificate listed in [[M:System/Certificates | certificate table]] (signing packets; the certificate must have private key). Applicable if RSA signature authentication method (auth-method=rsa-signature) is used.
}}
 
{{Mr-arg-table
|arg=comment
|type=string
|default=
|desc=Short description of the peer.
|desc=Short description of the peer.
}}
{{Mr-arg-table
|arg=compatibility-options
|type=skip-peer-id-validation
|default=
|desc=Compatibility options to work with peers not following RFC guidelines.
}}
}}


Line 913: Line 978:
{{Mr-arg-table
{{Mr-arg-table
|arg=exchange-mode
|arg=exchange-mode
|type=aggressive {{!}} base {{!}} main {{!}} main-l2tp {{!}} ike2
|type=aggressive {{!}} base {{!}} main {{!}} ike2
|default=main
|default=main
|desc=Different ISAKMP phase 1 exchange modes according to RFC 2408. Do not use other modes then main unless you know what you are doing.
|desc=Different ISAKMP phase 1 exchange modes according to RFC 2408.
'''main-l2tp''' mode relaxes rfc2409 section 5.4, to allow pre-shared-key authentication in main mode. <var>ike2</var> mode enables Ikev2 RFC 7296. Parameters that are ignored by Ikev2 <var>proposal-check</var>, <var>compatibility-options</var>, <var>lifebytes</var>, <var>dpd-maximum-failures</var>, <var>nat-traversal</var>.
'''main''' mode relaxes rfc2409 section 5.4, to allow pre-shared-key authentication in main mode. <var>ike2</var> mode enables Ikev2 RFC 7296. Parameters that are ignored by IKEv2 <var>proposal-check</var>, <var>compatibility-options</var>, <var>lifebytes</var>, <var>dpd-maximum-failures</var>, <var>nat-traversal</var>.
}}
}}


{{Mr-arg-table
{{Mr-arg-table
|arg=generate-policy
|arg=local-address
|type=no {{!}} port-override {{!}} port-strict
|type=IP/IPv6 Address
|default=no
|default=
|desc=Allow this peer to establish SA for non-existing policies. Such policies are created dynamically for the lifetime of SA. Automatic policies allows, for example, to create IPsec secured [[M:Interface/L2TP | L2TP]] tunnels, or any other setup where remote peer's IP address is not known at the configuration time.
|desc=Routers local address on which Phase 1 should be bounded to.
* <var>no</var> - do not generate policies
* <var>port-override</var> -- generate policies and force policy to use '''any''' port (old behavior)
* <var>port-strict</var> -- use ports from peer's proposal, which should match peer's policy
}}
}}


{{Mr-arg-table
{{Mr-arg-table
|arg=key
|arg=name
|type=string
|type=string
|default=
|default=
|desc=Name of the key from [[#Keys | key menu]]. Applicable if auth-method=rsa-key.
|desc=
}}
}}


{{Mr-arg-table
{{Mr-arg-table
|arg=local-address
|arg=passive
|type=IP/IPv6 Address
|type=yes {{!}} no
|default=
|default=no
|desc=Routers local address on which Phase 1 should be bounded to.
}}
 
{{Mr-arg-table
|arg=mode-config
|type=none {{!}} request-only {{!}} string
|default=none
|desc=Name of the mode config parameters from [[#Mode_Config | <code>mode-config</code> menu]]. When parameter is set mode-config is enabled.
* initiator peer on phase1 will send mode-config request and will set assigned IP address and DNS.
* responder will assign ip address if address-pool is specified, will send also DNS server addresses and split-include subnets (if defined).
}}
 
{{Mr-arg-table
|arg=my-id
|type=auto {{!}} fqdn {{!}} user-fqdn {{!}} key-id
|default=auto
|desc=This parameter sets IKE ID to specified mode. It is possible to manually set two modes FQDN and USER_FQDN.
* '''FQDN''' - fully qualified domain name
* '''USER_FQDN''' - specifies a fully-qualified username string, for example, "user@domain.com";
* '''address''' - IP address is used as ID;
* '''auto''' - tries to use correct ID automatically: IP for PSK, FQDN for Cert based connections;
* '''key-id''' - Use the specified key-id for the identity
 
}}
 
{{Mr-arg-table
|arg=notrack-chain
|type=string
|default=
|desc=Adds raw firewall rules matching ipsec policy to specified chain.
}}
 
{{Mr-arg-table
|arg=passive
|type=yes {{!}} no
|default=no
|desc=When passive mode is enabled will wait for remote peer to initiate IKE connection. Enabled passive mode also indicates that peer is xauth responder, and disabled passive mode - xauth initiator. When passive mode is disabled peer will try to establish not only phase1, but also phase2 automatically, if policies are configured or created during phase1.
|desc=When passive mode is enabled will wait for remote peer to initiate IKE connection. Enabled passive mode also indicates that peer is xauth responder, and disabled passive mode - xauth initiator. When passive mode is disabled peer will try to establish not only phase1, but also phase2 automatically, if policies are configured or created during phase1.
}}
{{Mr-arg-table
|arg=policy-template-group
|type=none {{!}} string
|default=
|desc=If generate-policy is enabled, responder checks against templates from the same [[#Policy_Groups | group]]. If none of the templates match, Phase2 SA will not be established.
}}
}}


Line 997: Line 1,016:
|type=string
|type=string
|default=default
|default=default
|desc=Name of the [[#Peer_Profiles|profile template]] that will be used during IKE negotiation.
|desc=Name of the [[#Profiles| profile template]] that will be used during IKE negotiation.
}}
}}


{{Mr-arg-table
{{Mr-arg-table-end
|arg=remote-certificate
|arg=send-initial-contact
|type=string
|default=
|desc=Name of a certificate  (listed in [[M:System/Certificates | certificate table]]) for authenticating the remote side (validating packets; no private key required). Applicable if RSA signature authentication method is used.
If remote-certificate is not specified then received certificate from remote peer is used and checked against CA in [[Manual:System/Certificates | certificate store]]. Proper CA must be imported in certificate store.
}}
 
{{Mr-arg-table
|arg=secret
|type=string
|default=
|desc=Secret string (in case pre-shared key authentication is used). If it starts with '0x', it is parsed as a hexadecimal value
}}
 
{{Mr-arg-table
|arg=send-initial-contact
|type=yes {{!}} no
|type=yes {{!}} no
|default=yes
|default=yes
|desc=Specifies whether to send "initial contact" IKE packet or wait for remote side, this packet should trigger removal of old peer SAs for current source address.
|desc=Specifies whether to send "initial contact" IKE packet or wait for remote side, this packet should trigger removal of old peer SAs for current source address.
Usually in road warrior setups clients are initiators and this parameter should be set to no. Initial contact is not sent if modecfg or xauth is enabled for ikev1.
Usually in road warrior setups clients are initiators and this parameter should be set to no. Initial contact is not sent if modecfg or xauth is enabled for ikev1.
}}
{{Mr-arg-table
|arg=xauth-login
|type=string
|default=
|desc=initiator (client) XAuth username
}}
{{Mr-arg-table-end
|arg=xauth-password
|type=string
|default=
|desc=initiator (client) XAuth password
}}
}}


Line 1,060: Line 1,050:




{{Note | exchange modes '''main''' and '''l2tp-main''' are treated the same, so these modes cannot be used select config between multiple peers.}}
==Identities==
 
{{Note |
IPSec phases information is erased, when /ip ipsec peer configuration is modified on the fly, however packets are being encrypted/decrypted because of installed-sa (for example remote-peers information is erased, when peer configuration is modified.}}
 
==Peer Profiles==


Peer profiles defines a set of parameters that will be used for IKE negotiation during Phase 1. These parameters may be common with other peer configurations.
Identities are configuration parameters that are specific to the remote peer. Main purpose of an identity is to handle authentication and verify peer's integrity.


'''Properties'''
'''Properties'''
Line 1,077: Line 1,062:


{{Mr-arg-table
{{Mr-arg-table
|arg=dh-group
|arg=auth-method
|type=ec2n155  {{!}} ec2n185  {{!}} modp1024  {{!}} modp1536  {{!}} modp2048  {{!}} modp3072  {{!}} modp4096  {{!}} modp6144  {{!}} modp768
|type=digital-signature {{!}} eap {{!}} eap-radius {{!}} pre-shared-key {{!}} pre-shared-key-xauth {{!}} rsa-key {{!}} rsa-signature-hybrid
|default=modp1024
|default=pre-shared-key
|desc=[[#Diffie-Hellman Groups | Diffie-Hellman group]] (cipher strength)
|desc=Authentication method:
* <var>digital-signature</var> - authenticate using a pair of RSA certificates;
* <var>eap</var> - IKEv2 EAP authentication for initiator (peer with netmask of /32). Must be used together with <var>eap-methods</var>;
* <var>eap-radius</var> - IKEv2 EAP RADIUS passthrough authentication for responder (RFC 3579). Server certificate in this case is required. If server certificate is not specified then only clients supporting EAP-only (RFC 5998) will be able to connect. Note that EAP method should be compatible with EAP-only;
* <var>pre-shared-key</var> - authenticate by a password (pre-shared secret) string shared between the peers (not recommended since offline attack on pre-shared key is possible);
* <var>rsa-key</var> - authenticate using a RSA key imported in [[#Keys | keys]] menu. Only supported in IKEv1;
* <var>pre-shared-key-xauth</var> - authenticate by a password (pre-shared secret) string shared between the peers + XAuth username and password. Only supported in IKEv1;
* <var>rsa-signature-hybrid</var> - responder certificate authentication with initiator XAuth. Only supported in IKEv1.
}}
}}


{{Mr-arg-table
{{Mr-arg-table
|arg=dpd-interval
|arg=certificate
|type=time {{!}} disable-dpd
|type=string
|default=2m
|default=
|desc=Dead peer detection interval. If set to <var>disable-dpd</var>, dead peer detection will not be used.
|desc=Name of a certificate listed in [[M:System/Certificates | System/Certificates]] (signing packets; the certificate must have private key). Applicable if digital signature authentication method (<var>auth-method=digital-signature</var>) or EAP (<var>auth-method=eap</var>) is used.
}}
}}


{{Mr-arg-table
{{Mr-arg-table
|arg=dpd-maximum-failures
|arg=comment
|type=integer: 1..100
|type=string
|default=5
|default=
|desc=Maximum count of failures until peer is considered to be dead. Applicable if DPD is enabled.
|desc=Short description of the identity.
}}
}}


{{Mr-arg-table
{{Mr-arg-table
|arg=enc-algorithm
|arg=disabled
|type=3des {{!}} aes-128 {{!}} aes-192 {{!}} aes-256 {{!}} blowfish {{!}} camellia-128 {{!}} camellia-192 {{!}} camellia-256 {{!}} des
|type=yes {{!}} no
|default=aes-128
|default=no
|desc=List of encryption algorithms that will be used by the peer.
|desc=Whether identity is used to match remote peer.
}}
}}


{{Mr-arg-table
{{Mr-arg-table
|arg=hash-algorithm
|arg=eap-methods
|type=md5 {{!}} sha1 {{!}} sha256 {{!}} sha512
|type=eap-mschapv2 {{!}} eap-peap {{!}} eap-tls {{!}} eap-ttls
|default=sha1
|default=eap-tls
|desc=Hashing algorithm. SHA (Secure Hash Algorithm) is stronger, but slower. MD5 uses 128-bit key, sha1-160bit key.
|desc=All EAP methods requires whole certificate chain including intermediate and root CA certificates to be present in [[M:System/Certificates | System/Certificates]] menu. Also <var>username</var> and <var>password</var> (if required by authentication server) must be specified. Multiple EAP methods may be specified and will be used in specified order. Currently supported EAP methods:
* <var>eap-mschapv2</var>;
* <var>eap-peap</var> - also known as PEAPv0/EAP-MSCHAPv2;
* <var>eap-tls</var> - requires additional client certificate specified under <var>certificate</var> parameter;
* <var>eap-ttls</var>.
}}
}}


{{Mr-arg-table
{{Mr-arg-table
|arg=lifebytes
|arg=generate-policy
|type=Integer: 0..4294967295
|type=no {{!}} port-override {{!}} port-strict
|default=0
|default=no
|desc=Phase 1 lifebytes is used only as administrative value which is added to proposal. Used in cases if remote peer requires specific lifebytes value to establish phase 1.
|desc=Allow this peer to establish SA for non-existing policies. Such policies are created dynamically for the lifetime of SA. Automatic policies allows, for example, to create IPsec secured [[M:Interface/L2TP | L2TP]] tunnels, or any other setup where remote peer's IP address is not known at the configuration time.
* <var>no</var> - do not generate policies;
* <var>port-override</var> - generate policies and force policy to use '''any''' port (old behavior);
* <var>port-strict</var> - use ports from peer's proposal, which should match peer's policy.
}}
}}


{{Mr-arg-table
{{Mr-arg-table
|arg=lifetime
|arg=key
|type=time
|type=string
|default=1d
|default=
|desc=Phase 1 lifetime: specifies how long the SA will be valid.
|desc=Name of the private key from [[#Keys | keys]] menu. Applicable if RSA key authentication method (<var>auth-method=rsa-key</var>) is used.
}}
}}


{{Mr-arg-table
{{Mr-arg-table
|arg=name
|arg=match-by
|type=string
|type=remote-id {{!}} certificate
|default=
|default=remote-id
|desc=
|desc=Defines the logic used for peer's identity validation.
* <var>remote-id</var> - will verify the peer's ID according to <var>remote-id</var> setting.
* <var>certificate</var> will verify the peer's certificate with what is specified under <var>remote-certificate</var> setting.
}}
}}


{{Mr-arg-table
{{Mr-arg-table
|arg=nat-traversal
|arg=mode-config
|type=yes {{!}} no
|type=none {{!}} *request-only {{!}} string
|default=yes
|default=none
|desc=Use Linux NAT-T mechanism to solve IPsec incompatibility with NAT routers inbetween IPsec peers. This can only be used with ESP protocol (AH is not supported by design, as it signs the complete packet, including IP header, which is changed by NAT, rendering AH signature invalid). The method encapsulates IPsec ESP traffic into UDP streams in order to overcome some minor issues that made ESP incompatible with NAT.
|desc=Name of the configuration parameters from [[#Mode_Configs | mode-config]] menu. When parameter is set mode-config is enabled.
}}
}}


{{Mr-arg-table-end
{{Mr-arg-table
|arg=proposal-check
|arg=my-id
|type=claim {{!}} exact {{!}} obey {{!}} strict
|type=auto {{!}} address {{!}} fqdn {{!}} user-fqdn {{!}} key-id
|default=obey
|default=auto
|desc=Phase 2 lifetime check logic:
|desc=On initiator, this controls what ID_i is sent to the responder. On responder, this controls what ID_r is sent to the initiator. In IKEv2, responder also expects this ID in received ID_r from initiator.
* <var>claim</var> - take shortest of proposed and configured lifetimes and notify initiator about it
* <var>auto</var> - tries to use correct ID automatically;
* <var>exact</var> - require lifetimes to be the same
* <var>address</var> - IP address is used as ID;
* <var>obey</var> - accept whatever is sent by an initiator
* <var>fqdn</var> - fully qualified domain name;
* <var>strict</var> - if proposed lifetime is longer than the default then reject proposal otherwise accept proposed lifetime
* <var>key-id</var> - use the specified key ID for the identity;
* <var>user fqdn</var> - specifies a fully-qualified username string, for example, "user@domain.com".
}}
}}


==Remote Peers==
{{Mr-arg-table
<p id="shbox"><b>Sub-menu:</b> <code>/ip ipsec remote-peers</code></p>
|arg=notrack-chain
|type=string
|default=
|desc=Adds [[M:IP/Firewall/Raw | IP/Firewall/Raw]] rules matching IPsec policy to specified chain. Use together with <var>generate-policy</var>.
}}


{{Mr-arg-table
|arg=password
|type=string
|default=
|desc=XAuth or EAP password. Applicable if pre-shared key with XAuth authentication method (<var>auth-method=pre-shared-key-xauth</var>) or EAP (<var>auth-method=eap</var>) is used.
}}


This menu provides various statistics about remote peers that currently have established phase 1 connection.
{{Mr-arg-table
 
|arg=peer
|type=string
|default=
|desc=Name of the [[#Peers | peer]] on which the identity applies.
}}


'''Read only properties'''
{{Mr-arg-table
|arg=policy-template-group
|type=none {{!}} string
|default=default
|desc=If <var>generate-policy</var> is enabled, traffic selectors are checked against templates from the same [[#Groups | group]]. If none of the templates match, Phase 2 SA will not be established.
}}


{{Mr-arg-table-h
{{Mr-arg-table
|prop=Property
|arg=remote-certificate
|desc=Description
|type=string
|default=
|desc=Name of a certificate  (listed in [[M:System/Certificates | System/Certificates]]) for authenticating the remote side (validating packets; no private key required). If <var>remote-certificate</var> is not specified then received certificate from remote peer is used and checked against CA in certificate menu. Proper CA must be imported in certificate store. If <var>remote-certificate</var> and <var>match-by=certificate</var> is specified, only the specific client certificate will be matched. Applicable if digital signature authentication method (<var>auth-method=digital-signature</var>) is used.
}}
}}


{{Mr-arg-ro-table
{{Mr-arg-table
|arg=dynamic-address
|arg=remote-id
|type=ip/ipv6 address
|type=auto {{!}} fqdn {{!}} user-fqdn {{!}} key-id {{!}} ignore
|desc=Dynamically assigned IP address by [[#Mode_configs | Mode config]]
|default=auto
|desc=This parameter controls what ID value to expect from the remote peer. Note that all types except for <var>ignore</var> will verify remote peer's ID with received certificate. In case when the peer sends certificate name as its ID, it is checked against the certificate, else the ID is checked against Subject Alt. Name.
* <var>auto</var> - accept all ID's;
* <var>fqdn</var> - fully qualified domain name. Only supported in IKEv2;
* <var>user fqdn</var> - a fully-qualified username string, for example, "user@domain.com". Only supported in IKEv2;
* <var>key-id</var> - specific key ID for the identity. Only supported in IKEv2;
* <var>ignore</var> - do not verify received ID with certificate (dangerous).
}}
}}


{{Mr-arg-ro-table
{{Mr-arg-table
|arg=last-seen
|arg=remote-key
|type=time
|type=string
|desc=Duration since last message received by this peer.
|default=
|desc=Name of the public key from [[#Keys | keys]] menu. Applicable if RSA key authentication method (<var>auth-method=rsa-key</var>) is used.
}}
}}


{{Mr-arg-ro-table
{{Mr-arg-table
|arg=local-address
|arg=secret
|type=ip/ipv6 address
|type=string
|desc=Local address on the router used by this peer.
|default=
|desc=Secret string. If it starts with '0x', it is parsed as a hexadecimal value. Applicable if pre-shared key authentication method (<var>auth-method=pre-shared-key</var> and <var>auth-method=pre-shared-key-xauth</var>) is used.
}}
}}


{{Mr-arg-ro-table
{{Mr-arg-table-end
|arg=natt-peer
|arg=username
|type=yes {{!}} no
|type=string
|desc=Whether NAT-T is used for this peer.
|default=
|desc=XAuth or EAP username. Applicable if pre-shared key with XAuth authentication method (<var>auth-method=pre-shared-key-xauth</var>) or EAP (<var>auth-method=eap</var>) is used.
}}
}}


{{Mr-arg-ro-table
 
|arg=remote-address
'''Read only properties'''
|type=ip/ipv6 address
 
|desc=Remote peer's ip/ipv6 address.
{{Mr-arg-table-h
|prop=Property
|desc=Description
}}
}}


{{Mr-arg-ro-table
{{Mr-arg-ro-table-end
|arg=responder
|arg=dynamic
|type=yes {{!}} no
|type=yes {{!}} no
|desc=Whether the connection is initiated by remote peer.
|default=
|desc=Whether this is a dynamically added entry by different service (e.g L2TP).
}}
}}


{{Mr-arg-ro-table
==Profiles==
|arg=side
 
|type=initiator {{!}} responder
Profiles defines a set of parameters that will be used for IKE negotiation during Phase 1. These parameters may be common with other peer configurations.
|desc=Shows which side initiated the Phase1 negotiation.
}}


{{Mr-arg-ro-table
'''Properties'''
|arg=state
|type=string
|desc=State of phase 1 negotiation with the peer. For example when phase1 and phase 2 are negotiated it will show state "established".
}}
 
{{Mr-arg-ro-table-end
|arg=uptime
|type=time
|desc=How long peers are in established state.
}}
 
 
'''Commands'''


{{Mr-arg-table-h
{{Mr-arg-table-h
Line 1,226: Line 1,247:
}}
}}


{{Mr-arg-ro-table-end
{{Mr-arg-table
|arg=kill-connections
|arg=dh-group
|type=
|type=modp768 {{!}} modp1024 {{!}} ec2n155 {{!}} ec2n185 {{!}} modp1536 {{!}} modp2048 {{!}} modp3072 {{!}} modp4096 {{!}} modp6144 {{!}} modp8192 {{!}} ecp256 {{!}} ecp384 {{!}} ecp521
|desc=Manually disconnects all remote peers.
|default=modp1024,modp2048
|desc=[[#Diffie-Hellman Groups | Diffie-Hellman group]] (cipher strength)
}}
}}


==Mode configs==
{{Mr-arg-table
<p id="shbox"><b>Sub-menu:</b> <code>/ip ipsec mode-config</code></p>
|arg=dpd-interval
|type=time {{!}} disable-dpd
|default=2m
|desc=Dead peer detection interval. If set to <var>disable-dpd</var>, dead peer detection will not be used.
}}


 
{{Mr-arg-table
ISAKMP and IKEv2 configuration attributes are configured in this menu.
|arg=dpd-maximum-failures
 
|type=integer: 1..100
 
|default=5
'''Properties'''
|desc=Maximum count of failures until peer is considered to be dead. Applicable if DPD is enabled.
 
{{Mr-arg-table-h
|prop=Property
|desc=Description
}}
}}


{{Mr-arg-table
{{Mr-arg-table
|arg=address-pool
|arg=enc-algorithm
|type=none {{!}} string
|type=3des {{!}} aes-128 {{!}} aes-192 {{!}} aes-256 {{!}} blowfish {{!}} camellia-128 {{!}} camellia-192 {{!}} camellia-256 {{!}} des
|default=
|default=aes-128
|desc=Name of the address pool from which responder will try to assign address if mode-config is enabled.
|desc=List of encryption algorithms that will be used by the peer.
}}
}}


{{Mr-arg-table
{{Mr-arg-table
|arg=address-prefix-length
|arg=hash-algorithm
|type=integer [1..32]
|type=md5 {{!}} sha1 {{!}} sha256 {{!}} sha512
|default=
|default=sha1
|desc=Prefix length (netmask) of assigned address from the pool.
|desc=Hashing algorithm. SHA (Secure Hash Algorithm) is stronger, but slower. MD5 uses 128-bit key, sha1-160bit key.
}}
}}


{{Mr-arg-table
{{Mr-arg-table
|arg=comment
|arg=lifebytes
|type=string
|type=Integer: 0..4294967295
|default=
|default=0
|desc=
|desc=Phase 1 lifebytes is used only as administrative value which is added to proposal. Used in cases if remote peer requires specific lifebytes value to establish phase 1.
}}
 
{{Mr-arg-table
|arg=lifetime
|type=time
|default=1d
|desc=Phase 1 lifetime: specifies how long the SA will be valid.
}}
}}


Line 1,275: Line 1,304:


{{Mr-arg-table
{{Mr-arg-table
|arg=responder
|arg=nat-traversal
|type=yes {{!}} no
|type=yes {{!}} no
|default=no
|default=yes
|desc=Specifies whether the configuration will work as an initiator (client) or responder (server). Initiator will request for mode-config parameters from responder.
|desc=Use Linux NAT-T mechanism to solve IPsec incompatibility with NAT routers inbetween IPsec peers. This can only be used with ESP protocol (AH is not supported by design, as it signs the complete packet, including IP header, which is changed by NAT, rendering AH signature invalid). The method encapsulates IPsec ESP traffic into UDP streams in order to overcome some minor issues that made ESP incompatible with NAT.
}}
}}


{{Mr-arg-table
{{Mr-arg-table-end
|arg=split-include
|arg=proposal-check
|type=list of IP prefix
|type=claim {{!}} exact {{!}} obey {{!}} strict
|default=
|default=obey
|desc=List of subnets in CIDR format, which to tunnel. Subnets will be sent to the peer using CISCO UNITY extension, remote peer will create specific dynamic policies.
|desc=Phase 2 lifetime check logic:
* <var>claim</var> - take shortest of proposed and configured lifetimes and notify initiator about it
* <var>exact</var> -  require lifetimes to be the same
* <var>obey</var> -  accept whatever is sent by an initiator
* <var>strict</var> -  if proposed lifetime is longer than the default then reject proposal otherwise accept proposed lifetime
}}
}}


{{Mr-arg-table
==Active Peers==
|arg=src-address-list
<p id="shbox"><b>Sub-menu:</b> <code>/ip ipsec active-peers</code></p>
|type=address list
 
|default=
 
|desc=Specifying an address list will generate dynamic source NAT rules. This parameter is only available with <var>responder=no</var>. [[#RoadWarrior_client_with_NAT | RoadWarrior client with NAT]]
This menu provides various statistics about remote peers that currently have established phase 1 connection.
}}
 
{{Mr-arg-table
|arg=static-dns
|type=list of IP
|default=
|desc=Manually specified DNS server's IP address to be sent to the client.
}}
 
{{Mr-arg-table-end
|arg=system-dns
|type=yes {{!}} no
|default=
|desc=When this option is enabled DNS addresses will be taken from <code>/ip dns</code>.
}}




Line 1,317: Line 1,335:
}}
}}


{{Mr-arg-ro-table-end
{{Mr-arg-ro-table
|arg=default
|arg=dynamic-address
|type=yes {{!}} no
|type=ip/ipv6 address
|default=
|desc=Dynamically assigned IP address by [[#Mode_configs | mode config]]
|desc=Whether this is a default system entry.
}}
}}


{{ Note | Not all IKE implementations support multiple split networks provided by split-include option. }}
{{Mr-arg-ro-table
 
|arg=last-seen
{{ Note | If RouterOS client is initiator, it will always send CISCO UNITY extension, and RouterOS supports only split-include from this extension.}}
|type=time
 
|desc=Duration since last message received by this peer.
{{ Note | It is not possible to use system-dns and static-dns at the same time.}}
}}
 
==Installed SAs==
<p id="shbox"><b>Sub-menu:</b> <code>/ip ipsec installed-sa</code></p>
 
 
This menu provides information about installed security associations including the keys.
 
 
'''Read only properties'''
 
{{Mr-arg-table-h
|prop=Property
|desc=Description
}}


{{Mr-arg-ro-table
{{Mr-arg-ro-table
|arg=AH
|arg=local-address
|type=yes {{!}} no
|type=ip/ipv6 address
|desc=Whether AH protocol is used by this SA.
|desc=Local address on the router used by this peer.
}}
}}


{{Mr-arg-ro-table
{{Mr-arg-ro-table
|arg=ESP
|arg=natt-peer
|type=yes {{!}} no
|type=yes {{!}} no
|desc=Whether ESP protocol is used by this SA.
|desc=Whether NAT-T is used for this peer.
}}
}}


{{Mr-arg-ro-table
{{Mr-arg-ro-table
|arg=add-lifetime
|arg=ph2-total
|type=time/time
|type=integer
|desc=Added lifetime for the SA in format soft/hard:
|desc=Total amount of active IPsec security associations.
* soft - time period after which ike will try to establish new SA;
* hard - time period after which SA is deleted.
}}
}}


{{Mr-arg-ro-table
{{Mr-arg-ro-table
|arg=addtime
|arg=remote-address
|type=time
|type=ip/ipv6 address
|desc=Date and time when this SA was added.
|desc=Remote peer's ip/ipv6 address.
}}
}}


{{Mr-arg-ro-table
{{Mr-arg-ro-table
|arg=auth-algorithm
|arg=responder
|type=md5 {{!}} null {{!}} sha1 {{!}} ...
|type=yes {{!}} no
|desc=Currently used authentication algorithm.
|desc=Whether the connection is initiated by remote peer.
}}
}}


{{Mr-arg-ro-table
{{Mr-arg-ro-table
|arg=auth-key
|arg=rx-bytes
|type=string
|type=integer
|desc=Used authentication key.
|desc=Total amount of bytes received from this peer.
}}
}}


{{Mr-arg-ro-table
{{Mr-arg-ro-table
|arg=current-bytes
|arg=rx-packets
|type=64-bit integer
|type=integer
|desc=Number of bytes seen by this SA.
|desc=Total amount of packets received from this peer.
}}
}}


{{Mr-arg-ro-table
{{Mr-arg-ro-table
|arg=dst-address
|arg=side
|type=IP
|type=initiator {{!}} responder
|desc=Destination address of this SA.
|desc=Shows which side initiated the Phase1 negotiation.
}}
}}


{{Mr-arg-ro-table
{{Mr-arg-ro-table
|arg=enc-algorithm
|arg=state
|type=des {{!}} 3des {{!}} aes-cbc {{!}} ...
|type=string
|desc=Currently used encryption algorithm.
|desc=State of phase 1 negotiation with the peer. For example when phase1 and phase 2 are negotiated it will show state "established".
}}
}}


{{Mr-arg-ro-table
{{Mr-arg-ro-table
|arg=enc-key
|arg=tx-bytes
|type=string
|type=integer
|desc=Used encryption key.
|desc=Total amount of bytes transmitted to this peer.
}}
}}


{{Mr-arg-ro-table
{{Mr-arg-ro-table
|arg=enc-key-size
|arg=tx-packets
|type=number
|type=integer
|desc=Used encryption key length.
|desc=Total amount of packets transmitted to this peer.
}}
}}


{{Mr-arg-ro-table
{{Mr-arg-ro-table-end
|arg=expires-in
|arg=uptime
|type=yes {{!}} no
|type=time
|desc=Time left until rekeying.
|desc=How long peers are in established state.
}}
}}


{{Mr-arg-ro-table
 
|arg=hw-aead
'''Commands'''
|type=yes {{!}} no
 
|desc=Whether this SA is [[#Hardware_acceleration | hardware accelerated]].
{{Mr-arg-table-h
|prop=Property
|desc=Description
}}
}}


{{Mr-arg-ro-table
{{Mr-arg-ro-table-end
|arg=replay
|arg=kill-connections
|type=integer
|type=
|desc=Size of replay window in bytes.
|desc=Manually disconnects all remote peers.
}}
}}


{{Mr-arg-ro-table
==Mode configs==
|arg=spi
<p id="shbox"><b>Sub-menu:</b> <code>/ip ipsec mode-config</code></p>
|type=string
|desc=Security Parameter Index identification tag
}}


{{Mr-arg-ro-table
|arg=src-address
|type=IP
|desc=Source address of this SA.
}}


{{Mr-arg-ro-table-end
ISAKMP and IKEv2 configuration attributes are configured in this menu.
|arg=state
|type=string
|desc=Shows the current state of the SA ("mature", "dying" etc)
}}




'''Commands'''
'''Properties'''


{{Mr-arg-table-h
{{Mr-arg-table-h
Line 1,456: Line 1,447:
}}
}}


{{Mr-arg-ro-table-end
{{Mr-arg-table
|arg=flush
|arg=address-pool
|type=
|type=none {{!}} string
|desc=Manually removes all installed security associations.
|default=
|desc=Name of the address pool from which responder will try to assign address if mode-config is enabled.
}}
}}


==Keys==
{{Mr-arg-table
<p id="shbox"><b>Sub-menu:</b> <code>/ip ipsec key</code></p>
|arg=address-prefix-length
 
|type=integer [1..32]
|default=
|desc=Prefix length (netmask) of assigned address from the pool.
}}


This menu lists all imported public andprivate keys, that can be used for peer authentication. Menu has several commands to work with keys.
{{Mr-arg-table
 
|arg=comment
 
|type=string
'''Properties'''
|default=
 
|desc=
{{Mr-arg-table-h
|prop=Property
|desc=Description
}}
}}


{{Mr-arg-table-end
{{Mr-arg-table
|arg=name
|arg=name
|type=string
|type=string
Line 1,483: Line 1,475:
}}
}}


{{Mr-arg-table
|arg=responder
|type=yes {{!}} no
|default=no
|desc=Specifies whether the configuration will work as an initiator (client) or responder (server). Initiator will request for mode-config parameters from responder.
}}


'''Read only properties'''
{{Mr-arg-table
 
|arg=split-include
{{Mr-arg-table-h
|type=list of IP prefix
|prop=Property
|default=
|desc=Description
|desc=List of subnets in CIDR format, which to tunnel. Subnets will be sent to the peer using CISCO UNITY extension, remote peer will create specific dynamic policies.
}}
}}


{{Mr-arg-ro-table
{{Mr-arg-table
|arg=key-size
|arg=src-address-list
|type=1024 {{!}} 2048 {{!}} 4096
|type=address list
|desc=Size of this key.
|default=
|desc=Specifying an address list will generate dynamic source NAT rules. This parameter is only available with <var>responder=no</var>. [[#RoadWarrior_client_with_NAT | RoadWarrior client with NAT]]
}}
}}


{{Mr-arg-ro-table
{{Mr-arg-table
|arg=private-key
|arg=static-dns
|type=yes {{!}} no
|type=list of IP
|desc=Whether this is a private key.
|default=
|desc=Manually specified DNS server's IP address to be sent to the client.
}}
}}


{{Mr-arg-ro-table-end
{{Mr-arg-table-end
|arg=rsa
|arg=system-dns
|type=yes {{!}} no
|type=yes {{!}} no
|desc=Whether this is a RSA key.
|default=
|desc=When this option is enabled DNS addresses will be taken from <code>/ip dns</code>.
}}
}}




'''Commands'''
'''Read only properties'''


{{Mr-arg-table-h
{{Mr-arg-table-h
Line 1,517: Line 1,518:
}}
}}


{{Mr-arg-ro-table
{{Mr-arg-ro-table-end
|arg=export-pub-key
|arg=default
|type=file-name; key
|type=yes {{!}} no
|desc=Export public key to file from one of existing private keys.  
|default=
|desc=Whether this is a default system entry.
}}
}}


{{Mr-arg-ro-table
{{ Note | Not all IKE implementations support multiple split networks provided by split-include option. }}
|arg=generate-key
 
|type=key-size; name
{{ Note | If RouterOS client is initiator, it will always send CISCO UNITY extension, and RouterOS supports only split-include from this extension.}}
|desc=Generate private key. Takes two parameters, name of newly generated key and key size 1024,2048 and 4096.
 
}}
{{ Note | It is not possible to use system-dns and static-dns at the same time.}}


{{Mr-arg-ro-table-end
==Installed SAs==
|arg=import
<p id="shbox"><b>Sub-menu:</b> <code>/ip ipsec installed-sa</code></p>
|type=file-name; name
|desc=Import key from file.
}}


==Users==
<p id="shbox"><b>Sub-menu:</b> <code>/ip ipsec user</code></p>


This menu provides information about installed security associations including the keys.


The menu consists of list of allowed XAuth users.


'''Read only properties'''


{{Mr-arg-table-h
{{Mr-arg-table-h
Line 1,547: Line 1,545:
}}
}}


{{Mr-arg-table
{{Mr-arg-ro-table
|arg=address
|arg=AH
|type=IP
|type=yes {{!}} no
|default=
|desc=Whether AH protocol is used by this SA.
|desc=IP address assigned to the client. If not set dynamic address is used allocated from the address-pool defined in [[#Mode_config | Mode config]] menu.
}}
}}


{{Mr-arg-table
{{Mr-arg-ro-table
|arg=name
|arg=ESP
|type=string
|type=yes {{!}} no
|default=
|desc=Whether ESP protocol is used by this SA.
|desc=Username.
}}
}}


{{Mr-arg-table-end
{{Mr-arg-ro-table
|arg=password
|arg=add-lifetime
|type=string
|type=time/time
|default=
|desc=Added lifetime for the SA in format soft/hard:
|desc=Password.
* soft - time period after which ike will try to establish new SA;
* hard - time period after which SA is deleted.
}}
}}


===Settings===
{{Mr-arg-ro-table
<p id="shbox"><b>Sub-menu:</b> <code>/ip ipsec user settings</code></p>
|arg=addtime
|type=time
|desc=Date and time when this SA was added.
}}


 
{{Mr-arg-ro-table
{{Mr-arg-table-h
|arg=auth-algorithm
|prop=Property
|type=md5 {{!}} null {{!}} sha1 {{!}} ...
|desc=Description
|desc=Currently used authentication algorithm.
}}
}}


{{Mr-arg-table-end
{{Mr-arg-ro-table
|arg=xauth-use-radius
|arg=auth-key
|type=yes {{!}} no
|type=string
|default=
|desc=Used authentication key.
|desc=Whether to use [[Manual:RADIUS_Client | Radius client]] for XAuth users or not.
}}
}}


{{ Note | Radius accounting currently is not supported by IPsec, only authentication. }}
{{Mr-arg-ro-table
|arg=current-bytes
|type=64-bit integer
|desc=Number of bytes seen by this SA.
}}


==Application Guides==
{{Mr-arg-ro-table
|arg=dst-address
|type=IP
|desc=Destination address of this SA.
}}


===RoadWarrior client with NAT===
{{Mr-arg-ro-table
|arg=enc-algorithm
|type=des {{!}} 3des {{!}} aes-cbc {{!}} ...
|desc=Currently used encryption algorithm.
}}


Consider setup as illustrated below. RouterOS acts as a RoadWarrior client connected to Office allowing access to its internal resources.
{{Mr-arg-ro-table
|arg=enc-key
|type=string
|desc=Used encryption key.
}}


[[file:Ipsec-road-warrior-client.png]]
{{Mr-arg-ro-table
|arg=enc-key-size
|type=number
|desc=Used encryption key length.
}}


Tunnel is established, local mode-config IP address is received and a set of dynamic policies are generated.
{{Mr-arg-ro-table
 
|arg=expires-in
<pre>
|type=yes {{!}} no
[admin@pair_r1] > ip ipsec policy print
|desc=Time left until rekeying.
Flags: T - template, X - disabled, D - dynamic, I - invalid, A - active, * - default
}}
0 T * group=default src-address=::/0 dst-address=::/0 protocol=all proposal=default template=yes


1  DA  src-address=192.168.77.254/32 src-port=any dst-address=10.5.8.0/24 dst-port=any protocol=all
{{Mr-arg-ro-table
      action=encrypt level=unique ipsec-protocols=esp tunnel=yes sa-src-address=10.155.107.8
|arg=hw-aead
      sa-dst-address=10.155.107.9 proposal=default ph2-count=1
|type=yes {{!}} no
|desc=Whether this SA is [[#Hardware_acceleration | hardware accelerated]].
}}


2  DA  src-address=192.168.77.254/32 src-port=any dst-address=192.168.55.0/24 dst-port=any protocol=all
{{Mr-arg-ro-table
      action=encrypt level=unique ipsec-protocols=esp tunnel=yes sa-src-address=10.155.107.8
|arg=replay
      sa-dst-address=10.155.107.9 proposal=default ph2-count=1
|type=integer
</pre>
|desc=Size of replay window in bytes.
}}


Currently only packets with source address of 192.168.77.254/32 will match the IPsec policies. For local network to be able to reach remote subnets, it is necessary to change the source address of local hosts to the dynamically assigned mode config IP address. It is possible to generate source NAT rules dynamically. This can be done by creating a new address list which contains of all local networks that NAT rule should be applied. In our case, it is 192.168.88.0/24.
{{Mr-arg-ro-table
|arg=spi
|type=string
|desc=Security Parameter Index identification tag
}}


<pre>
{{Mr-arg-ro-table
/ip firewall address-list add address=192.168.88.0/24 list=local-RW
|arg=src-address
</pre>
|type=IP
|desc=Source address of this SA.
}}


By specifying the address list under mode-config initiator configuration, a set of source NAT rules will be dynamically generated.
{{Mr-arg-ro-table-end
|arg=state
|type=string
|desc=Shows the current state of the SA ("mature", "dying" etc)
}}


<pre>
/ip ipsec mode-config set [ find name="request-only" ] src-address-list=local-RW
</pre>


When the IPsec tunnel is established, we can see the dynamically created source NAT rules for each network. Now every host in 192.168.88.0/24 is able to access Office's internal resources.
'''Commands'''


<pre>
{{Mr-arg-table-h
[admin@pair_r1] > ip firewall nat print
|prop=Property
Flags: X - disabled, I - invalid, D - dynamic
|desc=Description
0  D ;;; ipsec mode-config
}}
      chain=srcnat action=src-nat to-addresses=192.168.77.254 dst-address=192.168.55.0/24 src-address-list=local-RW


1  D ;;; ipsec mode-config
{{Mr-arg-ro-table-end
      chain=srcnat action=src-nat to-addresses=192.168.77.254 dst-address=10.5.8.0/24 src-address-list=local-RW
|arg=flush
</pre>
|type=
|desc=Manually removes all installed security associations.
}}


===Simple mutual PSK XAuth configuration===
==Keys==
<p id="shbox"><b>Sub-menu:</b> <code>/ip ipsec key</code></p>


Server side configuration:


<pre>
This menu lists all imported public andprivate keys, that can be used for peer authentication. Menu has several commands to work with keys.
/ip ipsec peer
add address=2.2.2.1 auth-method=pre-shared-key-xauth secret="123" passive=yes


/ip ipsec user
add name=test password=345
</pre>


Client side configuration:
'''Properties'''


<pre>
{{Mr-arg-table-h
/ip ipsec peer
|prop=Property
add address=2.2.2.2 auth-method=pre-shared-key-xauth secret="123" \
|desc=Description
  xauth-login=test xauth-password=345
}}
</pre>


{{Mr-arg-table-end
|arg=name
|type=string
|default=
|desc=
}}


{{Note | On server side it is mandatory to set <var>passive</var> to '''yes''' when XAuth is used. }}


===Allow only IPsec encapsulated traffic===
'''Read only properties'''


There are some scenarios where for security reasons you would like to drop access from/to specific networks if incoming/outgoing packets are not encrypted. For example, if we have L2TP/IPsec setup we would want to drop non encrypted L2TP connection attempts.
{{Mr-arg-table-h
|prop=Property
|desc=Description
}}


There are several ways how to achieve this:
{{Mr-arg-ro-table
* Using IPsec policy matcher in firewall;
|arg=key-size
* Using generic IPsec policy with <var>action</var> set to '''drop''' and lower priority (can be used in Road Warrior setups where dynamic policies are generated);
|type=1024 {{!}} 2048 {{!}} 4096
* By setting DSCP or priority in mangle and matching the same values in firewall after decapsulation.
|desc=Size of this key.
}}


====IPsec policy matcher====
{{Mr-arg-ro-table
|arg=private-key
|type=yes {{!}} no
|desc=Whether this is a private key.
}}


Lets set up IPsec policy matcher to accept all packets that matched any of IPsec policies and drop the rest:
{{Mr-arg-ro-table-end
|arg=rsa
|type=yes {{!}} no
|desc=Whether this is a RSA key.
}}


<pre>
add chain=input comment="ipsec policy matcher" in-interface=WAN \
    ipsec-policy=in,ipsec
add action=drop chain=input comment="drop all" in-interface=WAN log=yes
</pre>


IPsec policy matcher takes two parameters '''direction,policy'''. We used incoming direction and IPsec policy. IPsec policy option allows us to inspect packets after decapsulation, so for example if we want to allow only gre encapsulated packet from specific source address and drop the rest we could set up following rules:
'''Commands'''


<pre>
{{Mr-arg-table-h
add chain=input comment="ipsec policy matcher" in-interface=WAN \
|prop=Property
    ipsec-policy=in,ipsec protocol=gre src=address=192.168.33.1
|desc=Description
add action=drop chain=input comment="drop all" in-interface=WAN log=yes
}}
</pre>


For L2TP rule set would be:
{{Mr-arg-ro-table
|arg=export-pub-key
|type=file-name; key
|desc=Export public key to file from one of existing private keys.
}}


<pre>
{{Mr-arg-ro-table
add chain=input comment="ipsec policy matcher" in-interface=WAN \
|arg=generate-key
    ipsec-policy=in,ipsec protocol=udp dst-port=1701
|type=key-size; name
add action=drop chain=input protocol=udp dst-port=1701 comment="drop l2tp" in-interface=WAN log=yes
|desc=Generate private key. Takes two parameters, name of newly generated key and key size 1024,2048 and 4096.
</pre>
}}


====Using generic IPsec policy====
{{Mr-arg-ro-table-end
|arg=import
|type=file-name; name
|desc=Import key from file.
}}


The trick of this method is to add default policy with action drop. Lets assume we are running L2TP/IPsec server on public 1.1.1.1 address and we want to drop all non encrypted L2TP:
==Settings==
<p id="shbox"><b>Sub-menu:</b> <code>/ip ipsec settings</code></p>


<pre>
/ip ipsec policy
add src-address=1.1.1.1 dst-address=0.0.0.0/0 sa-src-address=1.1.1.1 \
  protocol=udp src-port=1701 tunnel=yes action=discard
</pre>


Now router will drop any L2TP unencrypted incoming traffic, but after successful L2TP/IPsec connection dynamic policy is created with higher priority than it is on default static rule and packets matching that dynamic rule can be forwarded.
{{Mr-arg-table-h
 
|prop=Property
{{ Note | Policy order is important! For this to work, make sure the static drop policy is below the dynamic policies. Move it below the policy template if necessary. }}
|desc=Description
}}


<pre>
{{Mr-arg-table
[admin@rack2_10g1] /ip ipsec policy> print
|arg=accounting
Flags: T - template, X - disabled, D - dynamic, I - inactive, * - default
|type=yes {{!}} no
0 T * group=default src-address=::/0 dst-address=::/0 protocol=all
|default=
      proposal=default template=yes
|desc=Whether to send RADIUS accounting requests to RADIUS server. Applicable if EAP Radius (<var>auth-method=eap-radius</var>) or pre-shared key with XAuth authentication method (<var>auth-method=pre-shared-key-xauth</var>) is used.
}}


1  D  src-address=1.1.1.1/32 src-port=1701 dst-address=10.5.130.71/32
{{Mr-arg-table
      dst-port=any protocol=udp action=encrypt level=require
|arg=interim-update
      ipsec-protocols=esp tunnel=no sa-src-address=1.1.1.1
|type=time
      sa-dst-address=10.5.130.71
|default=
|desc=Interval between each consecutive RADIUS accounting Interim update. Accounting must be enabled.
}}


2    src-address=1.1.1.1/32 src-port=1701 dst-address=0.0.0.0/0
{{Mr-arg-table-end
      dst-port=any protocol=udp action=discard level=unique
|arg=xauth-use-radius
      ipsec-protocols=esp tunnel=yes sa-src-address=1.1.1.1
|type=yes {{!}} no
      sa-dst-address=0.0.0.0 proposal=default manual-sa=none
|default=
|desc=Whether to use [[Manual:RADIUS_Client | Radius client]] for XAuth users or not.
}}


</pre>
==Application Guides==


===Manually specifying local-address parameter under Peer configuration===
===RoadWarrior client with NAT===


====Using different routing table====
Consider setup as illustrated below. RouterOS acts as a RoadWarrior client connected to Office allowing access to its internal resources.


IPsec, as any other service in RouterOS, uses main routing table regardless what <var>local-address</var> parameter is used for Peer configuration. It is necessary to apply routing marks to both IKE and IPSec traffic.
[[file:Ipsec-road-warrior-client.png]]


Consider the following example. There are two default routes - one in main routing table and another in routing table "backup". It is necessary to use the backup link for IPsec site to site tunnel.
Tunnel is established, local mode-config IP address is received and a set of dynamic policies are generated.


<pre>
<pre>
[admin@pair_r1] > /ip route print detail
[admin@pair_r1] > ip ipsec policy print  
Flags: X - disabled, A - active, D - dynamic, C - connect, S - static, r - rip, b - bgp, o - ospf, m - mme, B - blackhole, U - unreachable, P - prohibit
Flags: T - template, X - disabled, D - dynamic, I - invalid, A - active, * - default
  0 A S  dst-address=0.0.0.0/0 gateway=10.155.107.1 gateway-status=10.155.107.1 reachable via  ether1 distance=1 scope=30 target-scope=10 routing-mark=backup
  0 T * group=default src-address=::/0 dst-address=::/0 protocol=all proposal=default template=yes


  1 A S dst-address=0.0.0.0/0 gateway=172.22.2.115 gateway-status=172.22.2.115 reachable via  ether2 distance=1 scope=30 target-scope=10
  1  DA  src-address=192.168.77.254/32 src-port=any dst-address=10.5.8.0/24 dst-port=any protocol=all
      action=encrypt level=unique ipsec-protocols=esp tunnel=yes sa-src-address=10.155.107.8
      sa-dst-address=10.155.107.9 proposal=default ph2-count=1


  2 ADC dst-address=10.155.107.0/25 pref-src=10.155.107.8 gateway=ether1 gateway-status=ether1 reachable distance=0 scope=10
  2  DA  src-address=192.168.77.254/32 src-port=any dst-address=192.168.55.0/24 dst-port=any protocol=all
      action=encrypt level=unique ipsec-protocols=esp tunnel=yes sa-src-address=10.155.107.8  
      sa-dst-address=10.155.107.9 proposal=default ph2-count=1
</pre>


3 ADC  dst-address=172.22.2.0/24 pref-src=172.22.2.114 gateway=ether2 gateway-status=ether2 reachable distance=0 scope=10
Currently only packets with source address of 192.168.77.254/32 will match the IPsec policies. For local network to be able to reach remote subnets, it is necessary to change the source address of local hosts to the dynamically assigned mode config IP address. It is possible to generate source NAT rules dynamically. This can be done by creating a new address list which contains of all local networks that NAT rule should be applied. In our case, it is 192.168.88.0/24.


4 ADC  dst-address=192.168.1.0/24 pref-src=192.168.1.1 gateway=bridge-local gateway-status=ether2 reachable distance=0 scope=10
<pre>
/ip firewall address-list add address=192.168.88.0/24 list=local-RW
</pre>


[admin@pair_r1] > /ip firewall nat print 
By specifying the address list under mode-config initiator configuration, a set of source NAT rules will be dynamically generated.
Flags: X - disabled, I - invalid, D - dynamic
0    chain=srcnat action=masquerade out-interface=ether1 log=no log-prefix=""
 
1    chain=srcnat action=masquerade out-interface=ether2 log=no log-prefix=""
 
</pre>
 
IPsec peer and policy configurations are created using the backup link's source address, as well as NAT bypass rule for IPsec tunnel traffic.


<pre>
<pre>
/ip ipsec peer
/ip ipsec mode-config set [ find name="request-only" ] src-address-list=local-RW
add address=10.155.130.136/32 local-address=10.155.107.8 secret=test
/ip ipsec policy
add sa-src-address=10.155.107.8 src-address=192.168.1.0/24 dst-address=172.16.0.0/24 sa-dst-address=10.155.130.136 tunnel=yes
/ip firewall nat
add action=accept chain=srcnat src-address=192.168.1.0/24 dst-address=172.16.0.0/24 place-before=0
</pre>
</pre>


Currently, we see "phase1 negotiation failed due to time up" errors in the log. It is because IPsec tries to reach the remote peer using the main routing table with incorrect source address. It is necessary to mark UDP/500, UDP/4500 and ipsec-esp packets using Mangle.
When the IPsec tunnel is established, we can see the dynamically created source NAT rules for each network. Now every host in 192.168.88.0/24 is able to access Office's internal resources.


<pre>
<pre>
/ip firewall mangle
[admin@pair_r1] > ip firewall nat print
add action=mark-connection chain=output connection-mark=no-mark dst-address=10.155.130.136 dst-port=500,4500 \
Flags: X - disabled, I - invalid, D - dynamic
new-connection-mark=ipsec passthrough=yes protocol=udp
0  D ;;; ipsec mode-config
add action=mark-connection chain=output connection-mark=no-mark dst-address=10.155.130.136 new-connection-mark=ipsec \
      chain=srcnat action=src-nat to-addresses=192.168.77.254 dst-address=192.168.55.0/24 src-address-list=local-RW
passthrough=yes protocol=ipsec-esp
 
add action=mark-routing chain=output connection-mark=ipsec new-routing-mark=backup passthrough=no
1  D ;;; ipsec mode-config
      chain=srcnat action=src-nat to-addresses=192.168.77.254 dst-address=10.5.8.0/24 src-address-list=local-RW
</pre>
</pre>


====Using same routing table with multiple IP addresses====
===Simple mutual PSK XAuth configuration===


Consider the following example. There are multiple IP addresses from the same subnet on the public interface. Masquerade rule is configured on out-interface. It is necessary to use one of the IP addresses explicitly.
Server side configuration:


<pre>
<pre>
[admin@pair_r1] > /ip address print
/ip ipsec peer
Flags: X - disabled, I - invalid, D - dynamic
add address=2.2.2.1 auth-method=pre-shared-key-xauth secret="123" passive=yes
#  ADDRESS            NETWORK        INTERFACE
 
0  192.168.1.1/24    192.168.1.0    bridge-local
/ip ipsec user
1  172.22.2.1/24      172.22.2.0      ether1
add name=test password=345
2   172.22.2.2/24      172.22.2.0      ether1
3  172.22.2.3/24      172.22.2.0      ether1
 
[admin@pair_r1] > /ip route print
Flags: X - disabled, A - active, D - dynamic, C - connect, S - static, r - rip, b - bgp, o - ospf, m - mme, B - blackhole, U - unreachable, P - prohibit
#      DST-ADDRESS        PREF-SRC        GATEWAY            DISTANCE
1 A S  0.0.0.0/0                          172.22.2.115              1
3 ADC  172.22.2.0/24      172.22.2.1      ether1                    0
4 ADC  192.168.1.0/24    192.168.1.1    bridge-local              0
 
[admin@pair_r1] /ip firewall nat> print
Flags: X - disabled, I - invalid, D - dynamic
0    chain=srcnat action=masquerade out-interface=ether1 log=no log-prefix=""
 
</pre>
</pre>


IPsec peer and policy configuration is created using one of the public IP addresses.
Client side configuration:


<pre>
<pre>
/ip ipsec peer
/ip ipsec peer
add address=10.155.130.136/32 local-address=172.22.2.3 secret=test
add address=2.2.2.2 auth-method=pre-shared-key-xauth secret="123" \
/ip ipsec policy
  xauth-login=test xauth-password=345
add sa-src-address=172.22.2.3 src-address=192.168.1.0/24 dst-address=172.16.0.0/24 sa-dst-address=10.155.130.136 tunnel=yes
/ip firewall nat
add action=accept chain=srcnat src-address=192.168.1.0/24 dst-address=172.16.0.0/24 place-before=0
</pre>
</pre>


Currently the phase 1 connection uses a different source address than we specified and "phase1 negotiation failed due to time up" errors are shown in the logs. This is because masquerade is changing the source address of the connection to match pref-src address of the connected route. Solution is to exclude connections from the public IP address from being masqueraded.


<pre>
{{Note | On server side it is mandatory to set <var>passive</var> to '''yes''' when XAuth is used. }}
/ip firewall nat
add action=accept chain=srcnat protocol=udp src-port=500,4500 place-before=0
</pre>


==Application Examples==
===Allow only IPsec encapsulated traffic===


===Site to Site IPsec tunnel===
There are some scenarios where for security reasons you would like to drop access from/to specific networks if incoming/outgoing packets are not encrypted. For example, if we have L2TP/IPsec setup we would want to drop non encrypted L2TP connection attempts.


Consider setup as illustrated below. Two remote office routers are connected to internet and office workstations are behind NAT. Each office has its own local subnet, 10.1.202.0/24 for Office1 and 10.1.101.0/24 for Office2. Both remote offices needs secure tunnel to local networks behind routers.
There are several ways how to achieve this:
* Using IPsec policy matcher in firewall;
* Using generic IPsec policy with <var>action</var> set to '''drop''' and lower priority (can be used in Road Warrior setups where dynamic policies are generated);
* By setting DSCP or priority in mangle and matching the same values in firewall after decapsulation.


[[file:site-to-site-ipsec-example.png]]
====IPsec policy matcher====


====Site 1 configuration====
Lets set up IPsec policy matcher to accept all packets that matched any of IPsec policies and drop the rest:
 
Start off by configuring IPsec peer. It is enough to configure <var>address</var>, <var>auth-method</var> and <var>secret</var> parameters and leaving everything else as default. However, it is possible to set additional [[#Peers | Peer]] properties as long as they are identical between both sites.


<pre>
<pre>
/ip ipsec peer
add chain=input comment="ipsec policy matcher" in-interface=WAN \
add address=192.168.80.1/32 auth-method=pre-shared-key secret="test"
    ipsec-policy=in,ipsec
add action=drop chain=input comment="drop all" in-interface=WAN log=yes
</pre>
</pre>


For the next steps, it is important that proposed authentication and encryption algorithms match on both routers. In this example we can use predefined "default" proposal. To verify [[#Policy_Proposals | Proposal]] settings:
IPsec policy matcher takes two parameters '''direction,policy'''. We used incoming direction and IPsec policy. IPsec policy option allows us to inspect packets after decapsulation, so for example if we want to allow only gre encapsulated packet from specific source address and drop the rest we could set up following rules:


<pre>
<pre>
[admin@MikroTik] /ip ipsec proposal print
add chain=input comment="ipsec policy matcher" in-interface=WAN \
Flags: X - disabled, * - default
    ipsec-policy=in,ipsec protocol=gre src=address=192.168.33.1
0  * name="default" auth-algorithms=sha1
add action=drop chain=input comment="drop all" in-interface=WAN log=yes
      enc-algorithms=aes-256-cbc,aes-192-cbc,aes-128-cbc lifetime=30m
      pfs-group=modp1024
</pre>
</pre>


It is possible to create a new proposal entry for our tunnel and specify it when creating policy, however in this example, the default proposal is used:
For L2TP rule set would be:


<pre>
<pre>
/ip ipsec policy
add chain=input comment="ipsec policy matcher" in-interface=WAN \
add src-address=10.1.202.0/24 src-port=any dst-address=10.1.101.0/24 dst-port=any \
    ipsec-policy=in,ipsec protocol=udp dst-port=1701
sa-src-address=192.168.90.1 sa-dst-address=192.168.80.1 \
add action=drop chain=input protocol=udp dst-port=1701 comment="drop l2tp" in-interface=WAN log=yes
tunnel=yes action=encrypt proposal=default
</pre>
</pre>


====Site 2 configuration====
====Using generic IPsec policy====


Office 2 configuration is almost identical as Office 1 with proper IP address configuration.
The trick of this method is to add default policy with action drop. Lets assume we are running L2TP/IPsec server on public 1.1.1.1 address and we want to drop all non encrypted L2TP:


<pre>
<pre>
/ip ipsec peer
/ip ipsec policy
add address=192.168.90.1/32 auth-method=pre-shared-key secret="test"
add src-address=1.1.1.1 dst-address=0.0.0.0/0 sa-src-address=1.1.1.1 \
  protocol=udp src-port=1701 tunnel=yes action=discard
</pre>
</pre>


Continue with verifying that proposal parameters are matching between the sites:
Now router will drop any L2TP unencrypted incoming traffic, but after successful L2TP/IPsec connection dynamic policy is created with higher priority than it is on default static rule and packets matching that dynamic rule can be forwarded.
 
{{ Note | Policy order is important! For this to work, make sure the static drop policy is below the dynamic policies. Move it below the policy template if necessary. }}


<pre>
<pre>
[admin@MikroTik] /ip ipsec proposal print  
[admin@rack2_10g1] /ip ipsec policy> print
Flags: X - disabled, * - default  
Flags: T - template, X - disabled, D - dynamic, I - inactive, * - default
  0 * name="default" auth-algorithms=sha1
  0 T * group=default src-address=::/0 dst-address=::/0 protocol=all
      enc-algorithms=aes-256-cbc,aes-192-cbc,aes-128-cbc lifetime=30m
      proposal=default template=yes
      pfs-group=modp1024
</pre>


When it is done, create an IPsec policy:
1  D  src-address=1.1.1.1/32 src-port=1701 dst-address=10.5.130.71/32
      dst-port=any protocol=udp action=encrypt level=require
      ipsec-protocols=esp tunnel=no sa-src-address=1.1.1.1
      sa-dst-address=10.5.130.71


<pre>
2    src-address=1.1.1.1/32 src-port=1701 dst-address=0.0.0.0/0
/ip ipsec policy
      dst-port=any protocol=udp action=discard level=unique
add src-address=10.1.101.0/24 src-port=any dst-address=10.1.202.0/24 dst-port=any \
      ipsec-protocols=esp tunnel=yes sa-src-address=1.1.1.1
sa-src-address=192.168.80.1 sa-dst-address=192.168.90.1 \
      sa-dst-address=0.0.0.0 proposal=default manual-sa=none
tunnel=yes action=encrypt proposal=default
</pre>


At this point, the tunnel should be established and two Security Associations should be created on both routers:
<pre>
/ip ipsec
remote-peers print
installed-sa print
</pre>
</pre>


====NAT and Fasttrack Bypass====
===Manually specifying local-address parameter under Peer configuration===


At this point if you try to send traffic over the IPsec tunnel, it will not work, packets will be lost. This is because both routers have NAT rules (masquerade) that is changing source address before packet is encrypted. Router is unable to encrypt the packet, because source address do not match address specified in policy configuration. For more information see [[M:Packet_Flow#IPsec_encryption|IPsec packet flow example]].
====Using different routing table====


To fix this we need to set up NAT bypass rule.
IPsec, as any other service in RouterOS, uses main routing table regardless what <var>local-address</var> parameter is used for Peer configuration. It is necessary to apply routing marks to both IKE and IPSec traffic.


Office 1 router:
Consider the following example. There are two default routes - one in main routing table and another in routing table "backup". It is necessary to use the backup link for IPsec site to site tunnel.


<pre>
<pre>
/ip firewall nat
[admin@pair_r1] > /ip route print detail
add chain=srcnat action=accept place-before=0 \
Flags: X - disabled, A - active, D - dynamic, C - connect, S - static, r - rip, b - bgp, o - ospf, m - mme, B - blackhole, U - unreachable, P - prohibit
  src-address=10.1.202.0/24 dst-address=10.1.101.0/24
  0 A S dst-address=0.0.0.0/0 gateway=10.155.107.1 gateway-status=10.155.107.1 reachable via  ether1 distance=1 scope=30 target-scope=10 routing-mark=backup
</pre>


Office 2 router:
1 A S  dst-address=0.0.0.0/0 gateway=172.22.2.115 gateway-status=172.22.2.115 reachable via  ether2 distance=1 scope=30 target-scope=10


<pre>
  2 ADC dst-address=10.155.107.0/25 pref-src=10.155.107.8 gateway=ether1 gateway-status=ether1 reachable distance=0 scope=10
/ip firewall nat
add chain=srcnat action=accept place-before=0 \
  src-address=10.1.101.0/24 dst-address=10.1.202.0/24
</pre>


{{Note | If you previously tried to establish an IP connection before NAT bypass rule was added, you have to clear connection table from existing connection or restart both routers. }}
3 ADC  dst-address=172.22.2.0/24 pref-src=172.22.2.114 gateway=ether2 gateway-status=ether2 reachable distance=0 scope=10


It is very important that bypass rule is placed at the top of all other NAT rules.
4 ADC  dst-address=192.168.1.0/24 pref-src=192.168.1.1 gateway=bridge-local gateway-status=ether2 reachable distance=0 scope=10


Another issue is if you have Fasttrack enabled, packet bypasses IPsec policies. So we need to add accept rule before Fasttrack
[admin@pair_r1] > /ip firewall nat print 
<pre>
Flags: X - disabled, I - invalid, D - dynamic
/ip firewall filter
  0   chain=srcnat action=masquerade out-interface=ether1 log=no log-prefix=""
add chain=forward action=accept place-before=1
  src-address=10.1.101.0/24 dst-address=10.1.202.0/24 connection-state=established,related
add chain=forward action=accept place-before=1
src-address=10.1.202.0/24 dst-address=10.1.101.0/24 connection-state=established,related
</pre>


However this can add significant load to CPU if there is a fair amount of tunnels and significant traffic on each tunnel.
1    chain=srcnat action=masquerade out-interface=ether2 log=no log-prefix=""
 
Solution is to use RAW firewall tables to bypass connection tracking, that way eliminating need of filter rules listed above and reducing load on CPU by approximately 30%.


<pre>
/ip firewall raw
add action=notrack chain=prerouting src-address=10.1.101.0/24 dst-address=10.1.202.0/24
add action=notrack chain=prerouting src-address=10.1.202.0/24 dst-address=10.1.101.0/24
</pre>
</pre>


===Road Warrior setup using IKEv2 with RSA authentication===
IPsec peer and policy configurations are created using the backup link's source address, as well as NAT bypass rule for IPsec tunnel traffic.


This example explains how to establish a secure IPsec connection between a device connected to the Internet (road warrior client) and a device running RouterOS acting as a server.
<pre>
/ip ipsec peer
add address=10.155.130.136/32 local-address=10.155.107.8 secret=test
/ip ipsec policy
add sa-src-address=10.155.107.8 src-address=192.168.1.0/24 dst-address=172.16.0.0/24 sa-dst-address=10.155.130.136 tunnel=yes
/ip firewall nat
add action=accept chain=srcnat src-address=192.168.1.0/24 dst-address=172.16.0.0/24 place-before=0
</pre>


[[file:ipsec-road-warrior.png]]
Currently, we see "phase1 negotiation failed due to time up" errors in the log. It is because IPsec tries to reach the remote peer using the main routing table with incorrect source address. It is necessary to mark UDP/500, UDP/4500 and ipsec-esp packets using Mangle.
 
 
====RouterOS server configuration====
 
Before configuring IPsec, it is required to set up certificates. It is possible to use a separate Certificate Authority for certificate management, however in this example, self signed certificates are generated in RouterOS [[Manual:System/Certificates | System/Certificates]] menu. Some certificate requirements should be met to connect various devices to the server:
* Common name should contain IP or DNS name of the server;
* SAN (subject alternative name) should have IP or DNS of the server;
* EKU (extended key usage) tls-server and tls-client are required.


Considering all requirements above, generate CA and server certificates:
<pre>
<pre>
/certificate
/ip firewall mangle
add common-name=ca name=ca
add action=mark-connection chain=output connection-mark=no-mark dst-address=10.155.130.136 dst-port=500,4500 \
sign ca ca-crl-host=2.2.2.2
new-connection-mark=ipsec passthrough=yes protocol=udp
add common-name=2.2.2.2 subject-alt-name=IP:2.2.2.2 key-usage=tls-server name=server1
add action=mark-connection chain=output connection-mark=no-mark dst-address=10.155.130.136 new-connection-mark=ipsec \
sign server1 ca=ca
passthrough=yes protocol=ipsec-esp
add action=mark-routing chain=output connection-mark=ipsec new-routing-mark=backup passthrough=no
</pre>
</pre>


Now that valid certificates are created on the router, IPsec can be configured. [[#Mode_configs | Mode config]] is used for address distribution from [[Manual:IP/Pools | IP/Pools]]. Since that the policy template must be adjusted to allow only specific network [[#Policies | policies]], it is advised to create a separate policy [[#Groups | group]] and template. For compatibility, a new [[#Policy_Proposals | proposal]] is created with <var>prs-group=none</var>.
====Using same routing table with multiple IP addresses====
 
Consider the following example. There are multiple IP addresses from the same subnet on the public interface. Masquerade rule is configured on out-interface. It is necessary to use one of the IP addresses explicitly.


<pre>
<pre>
/ip pool add name=rw-pool ranges=192.168.77.2-192.168.77.254
[admin@pair_r1] > /ip address print
/ip ipsec proposal
Flags: X - disabled, I - invalid, D - dynamic
add name=rw-proposal pfs-group=none
#  ADDRESS            NETWORK        INTERFACE
/ip ipsec mode-conf
192.168.1.1/24    192.168.1.0    bridge-local
add name=rw-conf system-dns=yes address-pool=rw-pool address-prefix=32
1  172.22.2.1/24      172.22.2.0      ether1
/ip ipsec policy
2  172.22.2.2/24      172.22.2.0      ether1
group add name=rw-policies
3  172.22.2.3/24      172.22.2.0      ether1
add template=yes dst-address=192.168.77.0/24 group=rw-policies proposal=rw-proposal
 
[admin@pair_r1] > /ip route print
Flags: X - disabled, A - active, D - dynamic, C - connect, S - static, r - rip, b - bgp, o - ospf, m - mme, B - blackhole, U - unreachable, P - prohibit
#      DST-ADDRESS        PREF-SRC        GATEWAY            DISTANCE
1 A S  0.0.0.0/0                          172.22.2.115              1
3 ADC  172.22.2.0/24      172.22.2.1      ether1                    0
4 ADC  192.168.1.0/24     192.168.1.1    bridge-local              0
 
[admin@pair_r1] /ip firewall nat> print
Flags: X - disabled, I - invalid, D - dynamic
0    chain=srcnat action=masquerade out-interface=ether1 log=no log-prefix=""
 
</pre>
</pre>


Lastly, create a new IPsec [[#Peers | peer]] configuration.
IPsec peer and policy configuration is created using one of the public IP addresses.


<pre>
<pre>
/ip ipsec peer
/ip ipsec peer
add auth-method=rsa-signature certificate=server1 generate-policy=port-strict \
add address=10.155.130.136/32 local-address=172.22.2.3 secret=test
  mode-config=rw-conf passive=yes remote-certificate=none exchange-mode=ike2 \
/ip ipsec policy
  policy-template-group=rw-policies
add sa-src-address=172.22.2.3 src-address=192.168.1.0/24 dst-address=172.16.0.0/24 sa-dst-address=10.155.130.136 tunnel=yes
/ip firewall nat
add action=accept chain=srcnat src-address=192.168.1.0/24 dst-address=172.16.0.0/24 place-before=0
</pre>
</pre>


=====Split tunnel configuration=====
Currently the phase 1 connection uses a different source address than we specified and "phase1 negotiation failed due to time up" errors are shown in the logs. This is because masquerade is changing the source address of the connection to match pref-src address of the connected route. Solution is to exclude connections from the public IP address from being masqueraded.
 
Split tunnelling is a method which allows road warrior clients to only access a specific secured network and at the same time send the rest of the traffic based on their internal routing table (as opposed to sending all traffic over the tunnel). To configure split tunnelling, changes to [[#Mode_configs | mode config]] parameters are needed.
 
For example we will allow our road warrior clients to only access 10.5.8.0/24 network.


<pre>
<pre>
/ip ipsec mode-conf
/ip firewall nat
set [find name="rw-conf"] split-include=10.5.8.0/24
add action=accept chain=srcnat protocol=udp src-port=500,4500 place-before=0
</pre>
</pre>


It is also possible to send specific DNS server for the client to use. By default <var>system-dns=yes</var> is used, which sends DNS servers that are configured on the router itself in [[Manual:IP/DNS | IP/DNS]]. We can force the client to use different DNS server by using the <var>static-dns</var> parameter.
==Application Examples==


<pre>
===Site to Site IPsec tunnel===
/ip ipsec mode-conf
set [find name="rw-conf"] system-dns=no static-dns=10.5.8.1
</pre>


While it is possible to adjust IPsec policy template to only allow road warrior clients to generate [[#Policies | policies]] to network configured by <var>split-include</var> parameter, this can cause compatibility issues with different vendor implementations (see [[#Known_limitations | known limitations]]). Instead of adjusting the policy template, allow access to secured network in [[Manual:IP/Firewall/Filter | IP/Firewall/Filter]] and drop everything else.
Consider setup as illustrated below. Two remote office routers are connected to internet and office workstations are behind NAT. Each office has its own local subnet, 10.1.202.0/24 for Office1 and 10.1.101.0/24 for Office2. Both remote offices needs secure tunnel to local networks behind routers.


<pre>
[[file:site-to-site-ipsec-example.png]]
/ip firewall filter
add action=drop chain=forward src-address=192.168.77.0/24 dst-address=!10.5.8.0/24
</pre>


=====Generating client certificates=====
====Site 1 configuration====


To generate a new certificate for the client and sign it with previously created CA.
Start off by creating new Phase 1 [[#Profiles | profile]] and Phase 2 [[#Proposals | proposal]] entries using stronger or weaker encryption parameters that suits your needs. It is advised to create separate entries for each menu so that they are unique for each [[#Peers | peer]] in case it is necessary to adjust any of the settings in the future. These parameters must match between the sites or else the connection will not establish.


<pre>
<pre>
/certificate
/ip ipsec profile
add common-name=rw-client1 name=rw-client1 key-usage=tls-client
add dh-group=modp2048 enc-algorithm=aes-128 name=ike1-site2
sign rw-client1 ca=ca
/ip ipsec proposal
add enc-algorithms=aes-128-cbc name=ike1-site2 pfs-group=modp2048
</pre>
</pre>


<b>PKCS12 format</b> is accepted by most of client implementations, so when exporting the certificate, make sure PKCS12 is specified.
Continue by configuring a [[#Peers | peer]]. Specify the <var>address</var> of the remote router. This address should be reachable through UDP/500 and UDP/4500 ports, so make sure appropriate actions are taken regarding the router's firewall. Specify the <var>name</var> for this peer as well as the newly created <var>profile</var>.


<pre>
<pre>
/certificate
/ip ipsec peer
export-certificate rw-client1 export-passphrase=1234567890 type=pkcs12
add address=192.168.80.1/32 name=ike1-site2 profile=ike1-site2
</pre>
</pre>


A file named <i>cert_export_rw-client1.p12</i> is now located in the routers [[Manual:System/File | System/File]] section. This file should be securely transported to the client device.
The next step is to create an [[#Identities | identity]]. For a basic pre-shared key secured tunnel, there is nothing much to set except for a '''strong''' <var>secret</var> and the <var>peer</var> to which this identity applies.
 
Typically PKCS12 bundle contains also CA certificate, but some vendors may not install this CA, so self-signed CA certificate must be exported separately using PEM format.


<pre>
<pre>
/certificate
/ip ipsec identity
export-certificate ca type=pem
add peer=ike1-site2 secret=thisisnotasecurepsk
</pre>
</pre>


A file named <i>cert_export_ca.crt</i> is now located in the routers [[Manual:System/File | System/File]] section. This file should also be securely transported to the client device.
{{Warning | If security matters, consider using IKEv2 and a different <var>auth-method</var>. }}


<b>PEM</b> is another certificate format for use in client software that do not support PKCS12. Principle is pretty much the same.
Lastly, create a [[#Policies | policy]] which controls the networks/hosts between whom traffic should be encrypted.


<pre>
<pre>
/certificate
/ip ipsec policy
export-certificate ca
add src-address=10.1.202.0/24 src-port=any dst-address=10.1.101.0/24 dst-port=any \
export-certificate rw-client1 export-passphrase=1234567890
tunnel=yes action=encrypt proposal=ike1-site2 peer=ike1-site2
</pre>
</pre>


Three files are now located in the routers Files section: <i>cert_export_ca.crt</i>, <i>cert_export_rw-client1.crt</i> and <i>cert_export_rw-client1.key</i> which should be securely transported to the client device.
====Site 2 configuration====
 
=====Known limitations=====
 
Here is a list of known limitations by popular client software IKEv2 implementations.
 
* Windows will always ignore networks received by <var>split-include</var> and request policy with destination 0.0.0.0/0 (TSr). When IPsec-SA is generated, Windows requests DHCP option 249 to which RouterOS will respond with configured <var>split-include</var> networks automatically.
 
* Both Apple macOS and iOS will only accept the first <var>split-include</var> network.
 
* Both Apple macOS and iOS will use the DNS servers from <var>system-dns</var> and <var>static-dns</var> parameters only when 0.0.0.0/0 <var>split-include</var> is used.


* While some implementations can make use of different PFS group for phase 2, it is advised to use <var>pfs-grou=none</var> under [[#Policy_Proposals | proposals]] to avoid any compatibility issues.
Office 2 configuration is almost identical as Office 1 with proper IP address configuration. Start off by creating new Phase 1 [[#Profiles | profile]] and Phase 2 [[#Proposals | proposal]] entries.
 
==== RouterOS client configuration ====
 
Import a PKCS12 format certificate in RouterOS.


<pre>
<pre>
/certificate import file-name=cert_export_RouterOS_client.p12 passphrase=1234567890
/ip ipsec profile
add dh-group=modp2048 enc-algorithm=aes-128 name=ike1-site1
/ip ipsec proposal
add enc-algorithms=aes-128-cbc name=ike1-site1 pfs-group=modp2048
</pre>
</pre>


There should now be the self-signed CA certificate and the client certificate in Certificate menu. Usually the client certificate is imported first, but lets double check which is it.
Next is the [[#Peers | peer]] and [[#Identities | identity]].


<pre>
<pre>
/put [/certificate get [find common-name=RouterOS_client] name] 
/ip ipsec peer
add address=192.168.90.1/32 name=ike1-site1 profile=ike1-site1
/ip ipsec identity
add peer=ike1-site1 secret=thisisnotasecurepsk
</pre>
</pre>


<b>cert_export_RouterOS_client.p12_0</b> is the client certificate. Now we can create the peer configuration.
When it is done, create a [[#Policies | policy]]:


<pre>
<pre>
/ip ipsec peer
/ip ipsec policy
add address=2.2.2.2 auth-method=rsa-signature certificate=cert_export_RouterOS_client.p12_0 mode-config=request-only exchange-mode=ike2 generate-policy=port-strict
add src-address=10.1.101.0/24 src-port=any dst-address=10.1.202.0/24 dst-port=any \
tunnel=yes action=encrypt proposal=ike1-site1 peer=ike1-site1
</pre>
</pre>


Verify that the connection is successfully established.
At this point, the tunnel should be established and two IPsec Security Associations should be created on both routers:


<pre>
<pre>
/ip ipsec
/ip ipsec
remote-peers print
active-peers print
installed-sa print
installed-sa print
</pre>
</pre>


===== Enabling dynamic source NAT rule generation =====
====NAT and Fasttrack Bypass====


If we look at the generated dynamic [[#Policies | policies]], we see that only traffic with a specific (received by [[#Mode_configs | mode config]]) source address will be sent through the tunnel. But a router in most cases will need to route a specific device or network through the tunnel. In such case we can use source NAT to change the source address of packets to match the [[#Mode_configs | mode config]] address. Since the [[#Mode_configs | mode config]] address is dynamic, it is impossible to create static source NAT rule. In RouterOS it is possible to generate dynamic source NAT rules for [[#Mode_configs | mode config]] clients.
At this point if you try to send traffic over the IPsec tunnel, it will not work, packets will be lost. This is because both routers have NAT rules (masquerade) that is changing source address before packet is encrypted. Router is unable to encrypt the packet, because source address do not match address specified in policy configuration. For more information see [[M:Packet_Flow#IPsec_encryption | IPsec packet flow example]].


[[file:Ipsec-road-warrior-client.png]]
To fix this we need to set up [[M:IP/Firewall/NAT | IP/Firewall/NAT]] bypass rule.


For example, we have a local network 192.168.88.0/24 behind the router and we want all traffic from this network to be sent over the tunnel. First of all, we have to make a new [[M:IP/Firewall/Address_list | IP/Firewall/Address list]] which consists of our local network.
Office 1 router:


<pre>
<pre>
/ip firewall address-list
/ip firewall nat
add address=192.168.88.0/24 list=local
add chain=srcnat action=accept  place-before=0 \
src-address=10.1.202.0/24 dst-address=10.1.101.0/24
</pre>
</pre>


When it is done, we can assign newly created [[M:IP/Firewall/Address_list | IP/Firewall/Address list]] to [[#Mode_configs | mode config]] configuration.
Office 2 router:


<pre>
<pre>
/ip ipsec mode-config
/ip firewall nat
set [ find name=request-only ] src-address-list=local
add chain=srcnat action=accept  place-before=0 \
src-address=10.1.101.0/24 dst-address=10.1.202.0/24
</pre>
</pre>


{{Note | If multiple peers are using the same [[#Mode_configs | mode config]] configuration, instead of adjusting the default "request-only" entry, you can create a new [[#Mode_configs | mode config]] entry with <var>responder<nowiki>=</nowiki>no</var> and assign it to the peer. }}
{{Note | If you previously tried to establish an IP connection before NAT bypass rule was added, you have to clear connection table from existing connection or restart both routers. }}
 
It is very important that bypass rule is placed at the top of all other NAT rules.


Verify correct source NAT rule is dynamically generated when the tunnel is established.
Another issue is if you have [[M:IP/Fasttrack | IP/Fasttrack]] enabled, packet bypasses IPsec policies. So we need to add accept rule before FastTrack.


<pre>
<pre>
[admin@MikroTik] > /ip firewall nat print
/ip firewall filter
Flags: X - disabled, I - invalid, D - dynamic
add chain=forward action=accept place-before=1
0 D ;;; ipsec mode-config
src-address=10.1.101.0/24 dst-address=10.1.202.0/24 connection-state=established,related
      chain=srcnat action=src-nat to-addresses=192.168.77.254 src-address-list=local dst-address-list=!local
add chain=forward action=accept place-before=1
src-address=10.1.202.0/24 dst-address=10.1.101.0/24 connection-state=established,related
</pre>
</pre>


{{Warning | Make sure dynamic [[#Mode_configs | mode config]] address is not a part of local network. }}
However, this can add significant load to router's CPU if there is a fair amount of tunnels and significant traffic on each tunnel.


==== Windows client configuration ====
Solution is to use [[M:IP/Firewall/Raw | IP/Firewall/Raw]] to bypass connection tracking, that way eliminating need of filter rules listed above and reducing load on CPU by approximately 30%.


Open PKCS12 format certificate file on the Windows computer. Install the certificate by following the instructions. Make sure you select Local Machine store location.
<pre>
/ip firewall raw
add action=notrack chain=prerouting src-address=10.1.101.0/24 dst-address=10.1.202.0/24
add action=notrack chain=prerouting src-address=10.1.202.0/24 dst-address=10.1.101.0/24
</pre>


[[File:Ike2v2_cert_win.png | 1300px]]
===Road Warrior setup using IKEv2 with RSA authentication===


You can now proceed to Network and Internet settings -> VPN and add a new configuration. Fill in the Connection name, Server name or address parameters. Select IKEv2 under VPN type. When it is done, it is necessary to select "Use machine certificates". This can be done in Network and Sharing Center by clicking the Properties menu for the VPN connection. The setting is located under Security tab.
This example explains how to establish a secure IPsec connection between a device connected to the Internet (road warrior client) and a device running RouterOS acting as a server.


[[File:Ike2v2_conf_win.png | 1300px]]
[[file:ipsec-road-warrior.png]]


Currently Windows 10 is compatible with the following Phase 1 ([[#Peer_Profiles |peer profiles]]) and Phase 2 ([[#Policy_Proposals |policy proposals]]) proposal sets:


<table class="styled_table" style="width:50%">
====RouterOS server configuration====
<tr>
<th colspan=3>Phase 1</th>
</tr>
<tr>
<th>Hash Algorithm</th><th>Encryption Algorithm</th><th>DH Group</th>
</tr>
<tr><td>SHA1</td><td>3DES</td><td>modp1024</td></tr>
<tr><td>SHA256</td><td>3DES</td><td>modp1024</td></tr>
<tr><td>SHA1</td><td>AES-128-CBC</td><td>modp1024</td></tr>
<tr><td>SHA256</td><td>AES-128-CBC</td><td>modp1024</td></tr>
<tr><td>SHA1</td><td>AES-192-CBC</td><td>modp1024</td></tr>
<tr><td>SHA256</td><td>AES-192-CBC</td><td>modp1024</td></tr>
<tr><td>SHA1</td><td>AES-256-CBC</td><td>modp1024</td></tr>
<tr><td>SHA256</td><td>AES-256-CBC</td><td>modp1024</td></tr>
<tr><td>SHA1</td><td>AES-128-GCM</td><td>modp1024</td></tr>
<tr><td>SHA256</td><td>AES-128-GCM</td><td>modp1024</td></tr>
<tr><td>SHA1</td><td>AES-256-GCM</td><td>modp1024</td></tr>
<tr><td>SHA256</td><td>AES-256-GCM</td><td>modp1024</td></tr>
</table>


Before configuring IPsec, it is required to set up certificates. It is possible to use a separate Certificate Authority for certificate management, however in this example, self signed certificates are generated in RouterOS [[Manual:System/Certificates | System/Certificates]] menu. Some certificate requirements should be met to connect various devices to the server:
* Common name should contain IP or DNS name of the server;
* SAN (subject alternative name) should have IP or DNS of the server;
* EKU (extended key usage) tls-server and tls-client are required.


<table class="styled_table" style="width:50%">
Considering all requirements above, generate CA and server certificates:
<tr>
<pre>
<th colspan=3>Phase 2</th>
/certificate
</tr>
add common-name=ca name=ca
<tr>
sign ca ca-crl-host=2.2.2.2
<th>Hash Algorithm</th><th>Encryption Algorithm</th><th>PFS Group</th>
add common-name=2.2.2.2 subject-alt-name=IP:2.2.2.2 key-usage=tls-server name=server1
</tr>
sign server1 ca=ca
<tr><td>SHA1</td><td>AES-256-CBC</td><td>none</td></tr>
</pre>
<tr><td>SHA1</td><td>AES-128-CBC</td><td>none</td></tr>
<tr><td>SHA1</td><td>3DES</td><td>none</td></tr>
<tr><td>SHA1</td><td>DES</td><td>none</td></tr>
<tr><td>SHA1</td><td>none</td><td>none</td></tr>
</table>


Now that valid certificates are created on the router, add new Phase 1 [[#Profiles | profile]] and Phase 2 [[#Proposals | proposal]] entries with <var>pfs-group=none</var>.


==== macOS client configuration ====
<pre>
/ip ipsec profile
add name=ike2
/ip ipsec proposal
add name=ike2 pfs-group=none
</pre>


Open PKCS12 format certificate file on the macOS computer and install the certificate in "System" keychain. It is necessary to mark the CA certificate as trusted manually since it is self-signed. Locate the certificate macOS Keychain Access app under System tab and mark it as Always Trust.
[[#Mode_configs | Mode config]] is used for address distribution from [[Manual:IP/Pools | IP/Pools]].


[[File:Ikev2_cert_macos.png | 900px]]
<pre>
/ip pool
add name=ike2-pool ranges=192.168.77.2-192.168.77.254
/ip ipsec mode-config
add address-pool=ike2-pool address-prefix-length=32 name=ike2-conf
</pre>


You can now proceed to System Preferences -> Network and add a new configuration by clicking the + button. Select Interface: VPN, VPN Type: IKEv2 and name your connection. Remote ID must be set equal to common-name or subjAltName of server's certificate. Local ID can be left blank. Under Authentication Settings select None and choose the client certificate. You can now test the connectivity.
Since that the policy template must be adjusted to allow only specific network [[#Policies | policies]], it is advised to create a separate policy [[#Groups | group]] and template.  


[[File:Ikev2_conf_macos.png | 900px]]
<pre>
/ip ipsec policy group
add name=ike2-policies
/ip ipsec policy
add dst-address=192.168.77.0/24 group=ike2-policies proposal=ike2 src-address=0.0.0.0/0 template=yes
</pre>


Currently macOS is compatible with the following Phase 1 ([[#Peer_Profiles |peer profiles]]) and Phase 2 ([[#Policy_Proposals |policy proposals]]) proposal sets:
Create a new IPsec [[#Peers | peer]] entry which will listen to all incoming IKEv2 requests.


<table class="styled_table" style="width:50%">
<pre>
<tr>
/ip ipsec peer
<th colspan=3>Phase 1</th>
add exchange-mode=ike2 name=ike2 passive=yes profile=ike2
</tr>
</pre>
<tr>
<th>Hash Algorithm</th><th>Encryption Algorithm</th><th>DH Group</th>
</tr>
<tr><td>SHA256</td><td>AES-256-CBC</td><td>modp2048</td></tr>
<tr><td>SHA256</td><td>AES-256-CBC</td><td>ecp256</td></tr>
<tr><td>SHA256</td><td>AES-256-CBC</td><td>modp1536</td></tr>
<tr><td>SHA1</td><td>AES-128-CBC</td><td>modp1024</td></tr>
<tr><td>SHA1</td><td>3DES</td><td>modp1024</td></tr>
</table>


=====Identity configuration=====


<table class="styled_table" style="width:50%">
[[#Identities | Identity]] menu allows to match specific remote peers and assign different configuration for each one of them. First, create a default identity, that will accept all peers, but will verify the peer's identity with its certificate.
<tr>
<th colspan=3>Phase 2</th>
</tr>
<tr>
<th>Hash Algorithm</th><th>Encryption Algorithm</th><th>PFS Group</th>
</tr>
<tr><td>SHA256</td><td>AES-256-CBC</td><td>none</td></tr>
<tr><td>SHA1</td><td>AES-128-CBC</td><td>none</td></tr>
<tr><td>SHA1</td><td>3DES</td><td>none</td></tr>
</table>


<pre>
/ip ipsec identity
add auth-method=digital-signature certificate=server1 generate-policy=port-strict mode-config=ike2-conf peer=ike2 policy-template-group=ike2-policies
</pre>


{{Note | If peer's ID (ID_i) is not matching with the certificate it sends, the identity lookup will fail. See <var>remote-id</var> in [[#Identities | identities]] section. }}


==== iOS client configuration ====
For example, we want to assign different [[#Mode_configs | mode config]] for user "A", who uses certificate "rw-client1" to authenticate itself to the server. First of all, make sure a new mode config is created and ready to be applied for the specific user.


Typically PKCS12 bundle contains also CA certificate, but iOS does not install this CA, so self-signed CA certificate must be installed separately using PEM format. Open these files on the iOS device and install both certificates by following the instructions. It is necessary to mark the self-signed CA certificate as trusted on the iOS device. This can be done in Settings -> General -> About -> Certificate Trust Settings menu. When it is done, check whether both certificates are marked as "verified" under Settings -> General -> Profiles menu.
<pre>
/ip ipsec mode-config
add address=192.168.66.2 address-prefix-length=32 name=usr_A split-include=192.168.55.0/24 system-dns=no
</pre>


[[File:Ikev2_cert_ios.PNG | 900px]]
It is possible apply this configuration for user "A" by using <var>match-by=certificate</var> parameter and specifying his certificate with <var>remote-certificate</var>.


<pre>
/ip ipsec identity
add auth-method=digital-signature certificate=server1 generate-policy=port-strict match-by=certificate mode-config=usr_A peer=ike2 policy-template-group=ike2-policies remote-certificate=rw-client1
</pre>


You can now proceed to Settings -> General -> VPN menu and add a new configuration. Remote ID must be set equal to common-name or subjAltName of server's certificate. Local ID can be left blank.
=====Split tunnel configuration=====


[[File:Ikev2_conf_ios.PNG | 450px]]
Split tunneling is a method which allows road warrior clients to only access a specific secured network and at the same time send the rest of the traffic based on their internal routing table (as opposed to sending all traffic over the tunnel). To configure split tunneling, changes to [[#Mode_configs | mode config]] parameters are needed.


For example we will allow our road warrior clients to only access 10.5.8.0/24 network.


Currently iOS is compatible with the following Phase 1 ([[#Peer_Profiles |peer profiles]]) and Phase 2 ([[#Policy_Proposals |policy proposals]]) proposal sets:
<pre>
/ip ipsec mode-conf
set [find name="rw-conf"] split-include=10.5.8.0/24
</pre>


<table class="styled_table" style="width:50%">
It is also possible to send specific DNS server for the client to use. By default <var>system-dns=yes</var> is used, which sends DNS servers that are configured on the router itself in [[Manual:IP/DNS | IP/DNS]]. We can force the client to use different DNS server by using the <var>static-dns</var> parameter.
<tr>
 
<th colspan=3>Phase 1</th>
<pre>
</tr>
/ip ipsec mode-conf
<tr>
set [find name="rw-conf"] system-dns=no static-dns=10.5.8.1
<th>Hash Algorithm</th><th>Encryption Algorithm</th><th>DH Group</th>
</pre>
</tr>
<tr><td>SHA256</td><td>AES-256-CBC</td><td>modp2048</td></tr>
<tr><td>SHA256</td><td>AES-256-CBC</td><td>ecp256</td></tr>
<tr><td>SHA256</td><td>AES-256-CBC</td><td>modp1536</td></tr>
<tr><td>SHA1</td><td>AES-128-CBC</td><td>modp1024</td></tr>
<tr><td>SHA1</td><td>3DES</td><td>modp1024</td></tr>
</table>


While it is possible to adjust IPsec policy template to only allow road warrior clients to generate [[#Policies | policies]] to network configured by <var>split-include</var> parameter, this can cause compatibility issues with different vendor implementations (see [[#Known_limitations | known limitations]]). Instead of adjusting the policy template, allow access to secured network in [[Manual:IP/Firewall/Filter | IP/Firewall/Filter]] and drop everything else.


<table class="styled_table" style="width:50%">
<pre>
<tr>
/ip firewall filter
<th colspan=3>Phase 2</th>
add action=drop chain=forward src-address=192.168.77.0/24 dst-address=!10.5.8.0/24
</tr>
</pre>
<tr>
<th>Hash Algorithm</th><th>Encryption Algorithm</th><th>PFS Group</th>
</tr>
<tr><td>SHA256</td><td>AES-256-CBC</td><td>none</td></tr>
<tr><td>SHA1</td><td>AES-128-CBC</td><td>none</td></tr>
<tr><td>SHA1</td><td>3DES</td><td>none</td></tr>
</table>


{{Warning | Split networking is not a security measure. The client (initiator) can still request a different Phase 2 traffic selector. }}


{{Note | If you are connected to the VPN over WiFi, the iOS device can go into sleep mode and disconnect from the network.}}
=====Generating client certificates=====


To generate a new certificate for the client and sign it with previously created CA.


==== Android (strongSwan) client configuration ====
<pre>
/certificate
add common-name=rw-client1 name=rw-client1 key-usage=tls-client
sign rw-client1 ca=ca
</pre>


Currently there is no IKEv2 native support in Android, however it is possible to use strongSwan from Google Play Store which brings IKEv2 to Android. StrongSwan accepts PKCS12 format certificates, so before setting up the VPN connection in strongSwan, make sure you download the PKCS12 bundle to your Android device. When it is done, create a new VPN profile in strongSwan, type in the server IP and choose "IKEv2 Certificate" as VPN Type. When selecting a User certificate, press Install and follow the certificate extract procedure by specifying the PKCS12 bundle. Save the profile and test the connection by pressing on the VPN profile.
<b>PKCS12 format</b> is accepted by most of client implementations, so when exporting the certificate, make sure PKCS12 is specified.


[[file:Ikev2_conf_android.png | 1080px]]
<pre>
/certificate
export-certificate rw-client1 export-passphrase=1234567890 type=pkcs12
</pre>


A file named <i>cert_export_rw-client1.p12</i> is now located in the routers [[Manual:System/File | System/File]] section. This file should be securely transported to the client device.


It is possible to specify custom encryption settings in strongSwan by ticking the "Show advanced settings" checkbox. Currently strongSwan by default is compatible with the following Phase 1 ([[#Peer_Profiles |peer profiles]]) and Phase 2 ([[#Policy_Proposals |policy proposals]]) proposal sets:
Typically PKCS12 bundle contains also CA certificate, but some vendors may not install this CA, so self-signed CA certificate must be exported separately using PEM format.


<table class="styled_table" style="width:50%">
<pre>
<tr>
/certificate
<th colspan=3>Phase 1</th>
export-certificate ca type=pem
</tr>
</pre>
<tr>
 
<th>Hash Algorithm</th><th>Encryption Algorithm</th><th>DH Group</th>
A file named <i>cert_export_ca.crt</i> is now located in the routers [[Manual:System/File | System/File]] section. This file should also be securely transported to the client device.
</tr>
<tr><td>SHA*</td><td>AES-*-CBC</td><td>modp2048</td></tr>
<tr><td>SHA*</td><td>AES-*-CBC</td><td>ecp256</td></tr>
<tr><td>SHA*</td><td>AES-*-CBC</td><td>ecp384</td></tr>
<tr><td>SHA*</td><td>AES-*-CBC</td><td>ecp521</td></tr>
<tr><td>SHA*</td><td>AES-*-CBC</td><td>modp3072</td></tr>
<tr><td>SHA*</td><td>AES-*-CBC</td><td>modp4096</td></tr>
<tr><td>SHA*</td><td>AES-*-CBC</td><td>modp6144</td></tr>
<tr><td>SHA*</td><td>AES-*-CBC</td><td>modp8192</td></tr>
<tr><td>SHA*</td><td>AES-*-GCM</td><td>modp2048</td></tr>
<tr><td>SHA*</td><td>AES-*-GCM</td><td>ecp256</td></tr>
<tr><td>SHA*</td><td>AES-*-GCM</td><td>ecp384</td></tr>
<tr><td>SHA*</td><td>AES-*-GCM</td><td>ecp521</td></tr>
<tr><td>SHA*</td><td>AES-*-GCM</td><td>modp3072</td></tr>
<tr><td>SHA*</td><td>AES-*-GCM</td><td>modp4096</td></tr>
<tr><td>SHA*</td><td>AES-*-GCM</td><td>modp6144</td></tr>
<tr><td>SHA*</td><td>AES-*-GCM</td><td>modp8192</td></tr>
</table>


<b>PEM</b> is another certificate format for use in client software that do not support PKCS12. Principle is pretty much the same.


<table class="styled_table" style="width:50%">
<pre>
<tr>
/certificate
<th colspan=3>Phase 2</th>
export-certificate ca
</tr>
export-certificate rw-client1 export-passphrase=1234567890
<tr>
</pre>
<th>Hash Algorithm</th><th>Encryption Algorithm</th><th>PFS Group</th>
 
</tr>
Three files are now located in the routers Files section: <i>cert_export_ca.crt</i>, <i>cert_export_rw-client1.crt</i> and <i>cert_export_rw-client1.key</i> which should be securely transported to the client device.
<tr><td>none</td><td>AES-256-GCM</td><td>none</td></tr>
 
<tr><td>none</td><td>AES-128-GCM</td><td>none</td></tr>
=====Known limitations=====
<tr><td>SHA256</td><td>AES-256-CBC</td><td>none</td></tr>
 
<tr><td>SHA512</td><td>AES-256-CBC</td><td>none</td></tr>
Here is a list of known limitations by popular client software IKEv2 implementations.
<tr><td>SHA1</td><td>AES-256-CBC</td><td>none</td></tr>
 
<tr><td>SHA256</td><td>AES-192-CBC</td><td>none</td></tr>
* Windows will always ignore networks received by <var>split-include</var> and request policy with destination 0.0.0.0/0 (TSr). When IPsec-SA is generated, Windows requests DHCP option 249 to which RouterOS will respond with configured <var>split-include</var> networks automatically.
<tr><td>SHA512</td><td>AES-192-CBC</td><td>none</td></tr>
 
<tr><td>SHA1</td><td>AES-192-CBC</td><td>none</td></tr>
* Both Apple macOS and iOS will only accept the first <var>split-include</var> network.
<tr><td>SHA256</td><td>AES-128-CBC</td><td>none</td></tr>
 
<tr><td>SHA512</td><td>AES-128-CBC</td><td>none</td></tr>
* Both Apple macOS and iOS will use the DNS servers from <var>system-dns</var> and <var>static-dns</var> parameters only when 0.0.0.0/0 <var>split-include</var> is used.
<tr><td>SHA1</td><td>AES-128-CBC</td><td>none</td></tr>
</table>


==== strongSwan client configuration ====
* While some implementations can make use of different PFS group for phase 2, it is advised to use <var>pfs-group=none</var> under [[#Proposals | proposals]] to avoid any compatibility issues.


Download the PKCS12 certificate bundle and move it to /etc/ipsec.d/private directory.
==== RouterOS client configuration ====


Add exported passphrase for the private key to /etc/ipsec.secrets file where "strongSwan_client.p12" is the file name and "1234567890" is the passphrase.
Import a PKCS12 format certificate in RouterOS.


<pre>
<pre>
: P12 strongSwan_client.p12 "1234567890"
/certificate import file-name=cert_export_RouterOS_client.p12 passphrase=1234567890
</pre>
</pre>


Add a new connection to /etc/ipsec.conf file
There should now be the self-signed CA certificate and the client certificate in Certificate menu. Find out the name of the client certificate.


<pre>
<pre>
conn "ikev2"
/certificate print
        keyexchange=ikev2
        ike=aes128-sha1-modp2048
        esp=aes128-sha1
        leftsourceip=%modeconfig
        leftcert=strongSwan_client.p12
        leftfirewall=yes
        right=2.2.2.2
        rightid="CN=2.2.2.2"
        rightsubnet=0.0.0.0/0
        auto=add
</pre>
</pre>


You can now restart (or start) the ipsec daemon and initialize the connection
<b>cert_export_RouterOS_client.p12_0</b> is the client certificate.
 
It is advised to create a separate Phase 1 [[#Profiles | profile]] and Phase 2 [[#Proposals | proposal]] configurations to not interfere with any existing IPsec configuration.


<pre>
<pre>
$ ipsec restart
/ip ipsec profile
$ ipsec up ikev2
add name=ike2-rw
/ip ipsec proposal
add name=ike2-rw pfs-group=none
</pre>
</pre>


===Road Warrior setup with Mode Conf===
While it is possible to use the default [[#Policies | policy]] template for policy generation, it is better to create a new policy [[#Groups | group]] and template to separate this configuration from any other IPsec configuration.


<pre>
/ip ipsec policy group
add name=ike2-rw
/ip ipsec policy
add group=ike2-rw proposal=ike2-rw template=yes
</pre>


Consider setup where worker need to access other co-workers (workstations) and local office server remotely.
Create a new [[#Mode_configs | mode config]] entry with <var>responder=no</var> that will request configuration parameters from the server.
Office has two subnets:
* 192.168.55.0/24 for workstations
* 192.168.66.0/24 network that must not be reachable by RoadWarrior clients
* 10.5.8.0/24 for servers


And access to those networks should be secure.
<pre>
/ip ipsec mode-config
add name=ike2-rw responder=no
</pre>


[[file:ipsec-road-warrior.png]]
Lastly, create [[#Peers | peer]] and [[#Identities | identity]] configurations.


Typically in RoadWarrior setups as this it is impossible to know from which address user will connect, so we need to set up <var>generate-policy</var> parameter on the server side. However this leads to other problems, client can generate any policy and access any network in the office. Even set 0.0.0.0/0 and deny internet access to office workers.
<pre>
/ip ipsec peer
add address=2.2.2.2/32 exchange-mode=ike2 name=ike2-rw-client
/ip ipsec identity
add auth-method=digital-signature certificate=cert_export_RouterOS_client.p12_0 generate-policy=port-strict mode-config=ike2-rw peer=ike2-rw-client policy-template-group=ike2-rw
</pre>


'''Mode Conf''', '''policy group''' and '''policy templates''' will allow us to overcome these problems.
Verify that the connection is successfully established.
 
<pre>
/ip ipsec
active-peers print
installed-sa print
</pre>
 
===== Enabling dynamic source NAT rule generation =====
 
If we look at the generated dynamic [[#Policies | policies]], we see that only traffic with a specific (received by [[#Mode_configs | mode config]]) source address will be sent through the tunnel. But a router in most cases will need to route a specific device or network through the tunnel. In such case we can use source NAT to change the source address of packets to match the mode config address. Since the mode config address is dynamic, it is impossible to create static source NAT rule. In RouterOS it is possible to generate dynamic source NAT rules for mode config clients.


[[file:Ipsec-road-warrior-client.png]]


====IPsec Server Config====
For example, we have a local network 192.168.88.0/24 behind the router and we want all traffic from this network to be sent over the tunnel. First of all, we have to make a new [[M:IP/Firewall/Address_list | IP/Firewall/Address list]] which consists of our local network.


At first we need a pool from which RoadWarrior will will get an address. Typically in office you set up DHCP server for local workstations, the same DHCP pool can be used.
<pre>
<pre>
/ip pool
/ip firewall address-list
add name=ipsec-RW ranges=192.168.77.2-192.168.77.254
add address=192.168.88.0/24 list=local
</pre>
</pre>


Next we need to set up what settings to send to the client using Mode Conf.
When it is done, we can assign newly created [[M:IP/Firewall/Address_list | IP/Firewall/Address list]] to [[#Mode_configs | mode config]] configuration.
 
<pre>
<pre>
/ip ipsec mode-config
/ip ipsec mode-config
add address-pool=ipsec-RW name=RW-cfg split-include=\
set [ find name=ike2-rw ] src-address-list=local
    10.5.8.0/24,192.168.55.0/24
</pre>
</pre>
As you can see we specified from which pool to give out address and two allowed subnets.


Verify correct source NAT rule is dynamically generated when the tunnel is established.


Now to allow only specific source/destination address in generated policies we will use policy group and create policy templates:
<pre>
<pre>
/ip ipsec policy group
[admin@MikroTik] > /ip firewall nat print
add name=RoadWarrior
Flags: X - disabled, I - invalid, D - dynamic
0  D ;;; ipsec mode-config
      chain=srcnat action=src-nat to-addresses=192.168.77.254 src-address-list=local dst-address-list=!local
</pre>


/ip ipsec policy
{{Warning | Make sure dynamic [[#Mode_configs | mode config]] address is not a part of local network. }}
add dst-address=192.168.77.0/24 group=RoadWarrior src-address=10.5.8.0/24 \
    template=yes
add dst-address=192.168.77.0/24 group=RoadWarrior src-address=192.168.55.0/24 \
    template=yes
</pre>


==== Windows client configuration ====


Now we just add xauth users and peer with enabled Mode Conf and policy group.
Open PKCS12 format certificate file on the Windows computer. Install the certificate by following the instructions. Make sure you select Local Machine store location.
<pre>
/ip ipsec user
add name=user1 password=123
add name=user2 password=234


/ip ipsec peer
[[File:Ike2v2_cert_win.png | 1300px]]
add auth-method=pre-shared-key-xauth generate-policy=port-strict mode-config=RW-cfg \
    policy-template-group=RoadWarrior secret=123 passive=yes


</pre>
You can now proceed to Network and Internet settings -> VPN and add a new configuration. Fill in the Connection name, Server name or address parameters. Select IKEv2 under VPN type. When it is done, it is necessary to select "Use machine certificates". This can be done in Network and Sharing Center by clicking the Properties menu for the VPN connection. The setting is located under Security tab.


==== Apple iOS (iPhone/iPad) Client ====
[[File:Ike2v2_conf_win.png | 1300px]]


For iOS devices to be able to connect, '''proposal''' changes are needed:
Currently Windows 10 is compatible with the following Phase 1 ([[#Profiles | profiles]]) and Phase 2 ([[#Proposals | proposals]]) proposal sets:


* does not work with 3des encryption algorithm, '''aes-128/256''' works
<table class="styled_table" style="width:50%">
* auth algorithm must be '''sha1'''
<tr>
* PFS group must be '''none'''
<th colspan=3>Phase 1</th>
* lifetime must be '''8 hours'''
</tr>
 
<tr>
Example of valid proposal configuration for iOS devices:
<th>Hash Algorithm</th><th>Encryption Algorithm</th><th>DH Group</th>
<pre>
</tr>
/ip ipsec proposal
<tr><td>SHA1</td><td>3DES</td><td>modp1024</td></tr>
set default enc-algorithms=aes-128-cbc,aes-256-cbc lifetime=8h \
<tr><td>SHA256</td><td>3DES</td><td>modp1024</td></tr>
    pfs-group=none
<tr><td>SHA1</td><td>AES-128-CBC</td><td>modp1024</td></tr>
</pre>
<tr><td>SHA256</td><td>AES-128-CBC</td><td>modp1024</td></tr>
<tr><td>SHA1</td><td>AES-192-CBC</td><td>modp1024</td></tr>
<tr><td>SHA256</td><td>AES-192-CBC</td><td>modp1024</td></tr>
<tr><td>SHA1</td><td>AES-256-CBC</td><td>modp1024</td></tr>
<tr><td>SHA256</td><td>AES-256-CBC</td><td>modp1024</td></tr>
<tr><td>SHA1</td><td>AES-128-GCM</td><td>modp1024</td></tr>
<tr><td>SHA256</td><td>AES-128-GCM</td><td>modp1024</td></tr>
<tr><td>SHA1</td><td>AES-256-GCM</td><td>modp1024</td></tr>
<tr><td>SHA256</td><td>AES-256-GCM</td><td>modp1024</td></tr>
</table>


{{ Note | Iphone does not work with split-include 0.0.0.0/0. If you set 0.0.0.0/0 for older clients traffic will not be sent over the tunnel, for newer ios clients tunnel will not be established.}}


==== Android Client Notes ====
<table class="styled_table" style="width:50%">
 
<tr>
Android devices are trying to add policy with destination 0.0.0.0/0, so you have to make sure that correct policy template is added.
<th colspan=3>Phase 2</th>
 
</tr>
In our case we need to add:
<tr>
<pre>
<th>Hash Algorithm</th><th>Encryption Algorithm</th><th>PFS Group</th>
/ip ipsec policy
</tr>
add group=RoadWarrior dst-address=192.168.77.0/24 src-address=0.0.0.0/0 template=yes
<tr><td>SHA1</td><td>AES-256-CBC</td><td>none</td></tr>
</pre>
<tr><td>SHA1</td><td>AES-128-CBC</td><td>none</td></tr>
<tr><td>SHA1</td><td>3DES</td><td>none</td></tr>
<tr><td>SHA1</td><td>DES</td><td>none</td></tr>
<tr><td>SHA1</td><td>none</td><td>none</td></tr>
</table>
 
 
==== macOS client configuration ====
 
Open PKCS12 format certificate file on the macOS computer and install the certificate in "System" keychain. It is necessary to mark the CA certificate as trusted manually since it is self-signed. Locate the certificate macOS Keychain Access app under System tab and mark it as Always Trust.
 
[[File:Ikev2_cert_macos.png | 900px]]


====RouterOS Client Config====
You can now proceed to System Preferences -> Network and add a new configuration by clicking the + button. Select Interface: VPN, VPN Type: IKEv2 and name your connection. Remote ID must be set equal to common-name or subjAltName of server's certificate. Local ID can be left blank. Under Authentication Settings select None and choose the client certificate. You can now test the connectivity.


<pre>
[[File:Ikev2_conf_macos.png | 900px]]
/ip ipsec peer
add address=2.2.2.2 auth-method=pre-shared-key-xauth generate-policy=port-strict secret=123 \
    xauth-login=user1 xauth-password=123 mode-config=request-only
</pre>


====Shrew Client Config====
Currently macOS is compatible with the following Phase 1 ([[#Profiles | profiles]]) and Phase 2 ([[#Proposals | proposals]]) proposal sets:
 
<table class="styled_table" style="width:50%">
<tr>
<th colspan=3>Phase 1</th>
</tr>
<tr>
<th>Hash Algorithm</th><th>Encryption Algorithm</th><th>DH Group</th>
</tr>
<tr><td>SHA256</td><td>AES-256-CBC</td><td>modp2048</td></tr>
<tr><td>SHA256</td><td>AES-256-CBC</td><td>ecp256</td></tr>
<tr><td>SHA256</td><td>AES-256-CBC</td><td>modp1536</td></tr>
<tr><td>SHA1</td><td>AES-128-CBC</td><td>modp1024</td></tr>
<tr><td>SHA1</td><td>3DES</td><td>modp1024</td></tr>
</table>
 
 
<table class="styled_table" style="width:50%">
<tr>
<th colspan=3>Phase 2</th>
</tr>
<tr>
<th>Hash Algorithm</th><th>Encryption Algorithm</th><th>PFS Group</th>
</tr>
<tr><td>SHA256</td><td>AES-256-CBC</td><td>none</td></tr>
<tr><td>SHA1</td><td>AES-128-CBC</td><td>none</td></tr>
<tr><td>SHA1</td><td>3DES</td><td>none</td></tr>
</table>


<pre>
n:version:2
n:network-ike-port:500
n:network-mtu-size:1380
n:network-natt-port:4500
n:network-natt-rate:15
n:network-frag-size:540
n:network-dpd-enable:0
n:client-banner-enable:0
n:network-notify-enable:0
n:client-wins-used:0
n:client-wins-auto:1
n:client-dns-used:1
n:client-dns-auto:0
n:client-splitdns-used:1
n:client-splitdns-auto:0
n:phase1-dhgroup:2
n:phase1-life-secs:86400
n:phase1-life-kbytes:0
n:vendor-chkpt-enable:0
n:phase2-life-secs:300
n:phase2-life-kbytes:0
n:policy-nailed:1
n:policy-list-auto:1
n:client-addr-auto:1
s:network-host:2.2.2.2
s:client-auto-mode:pull
s:client-iface:virtual
s:network-natt-mode:disable
s:network-frag-mode:disable
s:auth-method:mutual-psk-xauth
s:ident-client-type:address
s:ident-server-type:address
b:auth-mutual-psk:MTIz
s:phase1-exchange:main
s:phase1-cipher:3des
s:phase1-hash:md5
s:phase2-transform:esp-3des
s:phase2-hmac:sha1
s:ipcomp-transform:disabled
n:phase2-pfsgroup:2
s:policy-level:require


</pre>


===Basic L2TP/IPsec setup===
==== iOS client configuration ====


This example demonstrates how to easily setup L2TP/IPsec server on RouterOS for road warrior connections (works with Windows, Android, iOS, macOS and other vendor L2TP/IPsec implementations).
Typically PKCS12 bundle contains also CA certificate, but iOS does not install this CA, so self-signed CA certificate must be installed separately using PEM format. Open these files on the iOS device and install both certificates by following the instructions. It is necessary to mark the self-signed CA certificate as trusted on the iOS device. This can be done in Settings -> General -> About -> Certificate Trust Settings menu. When it is done, check whether both certificates are marked as "verified" under Settings -> General -> Profiles menu.


====RouterOS server configuration====
[[File:Ikev2_cert_ios.PNG | 900px]]


First step is to enable L2TP server:


<pre>
You can now proceed to Settings -> General -> VPN menu and add a new configuration. Remote ID must be set equal to common-name or subjAltName of server's certificate. Local ID can be left blank.
/interface l2tp-server server
 
set enabled=yes use-ipsec=required ipsec-secret=mySecret default-profile=default
[[File:Ikev2_conf_ios.PNG | 450px]]
</pre>
 
 
Currently iOS is compatible with the following Phase 1 ([[#Profiles | profiles]]) and Phase 2 ([[#Proposals | proposals]]) proposal sets:
 
<table class="styled_table" style="width:50%">
<tr>
<th colspan=3>Phase 1</th>
</tr>
<tr>
<th>Hash Algorithm</th><th>Encryption Algorithm</th><th>DH Group</th>
</tr>
<tr><td>SHA256</td><td>AES-256-CBC</td><td>modp2048</td></tr>
<tr><td>SHA256</td><td>AES-256-CBC</td><td>ecp256</td></tr>
<tr><td>SHA256</td><td>AES-256-CBC</td><td>modp1536</td></tr>
<tr><td>SHA1</td><td>AES-128-CBC</td><td>modp1024</td></tr>
<tr><td>SHA1</td><td>3DES</td><td>modp1024</td></tr>
</table>
 
 
<table class="styled_table" style="width:50%">
<tr>
<th colspan=3>Phase 2</th>
</tr>
<tr>
<th>Hash Algorithm</th><th>Encryption Algorithm</th><th>PFS Group</th>
</tr>
<tr><td>SHA256</td><td>AES-256-CBC</td><td>none</td></tr>
<tr><td>SHA1</td><td>AES-128-CBC</td><td>none</td></tr>
<tr><td>SHA1</td><td>3DES</td><td>none</td></tr>
</table>
 
 
{{Note | If you are connected to the VPN over WiFi, the iOS device can go into sleep mode and disconnect from the network.}}
 
 
==== Android (strongSwan) client configuration ====
 
Currently there is no IKEv2 native support in Android, however it is possible to use strongSwan from Google Play Store which brings IKEv2 to Android. StrongSwan accepts PKCS12 format certificates, so before setting up the VPN connection in strongSwan, make sure you download the PKCS12 bundle to your Android device. When it is done, create a new VPN profile in strongSwan, type in the server IP and choose "IKEv2 Certificate" as VPN Type. When selecting a User certificate, press Install and follow the certificate extract procedure by specifying the PKCS12 bundle. Save the profile and test the connection by pressing on the VPN profile.
 
[[file:Ikev2_conf_android.png | 1080px]]
 
 
It is possible to specify custom encryption settings in strongSwan by ticking the "Show advanced settings" checkbox. Currently strongSwan by default is compatible with the following Phase 1 ([[#Profiles | profiles]]) and Phase 2 ([[#Proposals | proposals]]) proposal sets:
 
<table class="styled_table" style="width:50%">
<tr>
<th colspan=3>Phase 1</th>
</tr>
<tr>
<th>Hash Algorithm</th><th>Encryption Algorithm</th><th>DH Group</th>
</tr>
<tr><td>SHA*</td><td>AES-*-CBC</td><td>modp2048</td></tr>
<tr><td>SHA*</td><td>AES-*-CBC</td><td>ecp256</td></tr>
<tr><td>SHA*</td><td>AES-*-CBC</td><td>ecp384</td></tr>
<tr><td>SHA*</td><td>AES-*-CBC</td><td>ecp521</td></tr>
<tr><td>SHA*</td><td>AES-*-CBC</td><td>modp3072</td></tr>
<tr><td>SHA*</td><td>AES-*-CBC</td><td>modp4096</td></tr>
<tr><td>SHA*</td><td>AES-*-CBC</td><td>modp6144</td></tr>
<tr><td>SHA*</td><td>AES-*-CBC</td><td>modp8192</td></tr>
<tr><td>SHA*</td><td>AES-*-GCM</td><td>modp2048</td></tr>
<tr><td>SHA*</td><td>AES-*-GCM</td><td>ecp256</td></tr>
<tr><td>SHA*</td><td>AES-*-GCM</td><td>ecp384</td></tr>
<tr><td>SHA*</td><td>AES-*-GCM</td><td>ecp521</td></tr>
<tr><td>SHA*</td><td>AES-*-GCM</td><td>modp3072</td></tr>
<tr><td>SHA*</td><td>AES-*-GCM</td><td>modp4096</td></tr>
<tr><td>SHA*</td><td>AES-*-GCM</td><td>modp6144</td></tr>
<tr><td>SHA*</td><td>AES-*-GCM</td><td>modp8192</td></tr>
</table>
 
 
<table class="styled_table" style="width:50%">
<tr>
<th colspan=3>Phase 2</th>
</tr>
<tr>
<th>Hash Algorithm</th><th>Encryption Algorithm</th><th>PFS Group</th>
</tr>
<tr><td>none</td><td>AES-256-GCM</td><td>none</td></tr>
<tr><td>none</td><td>AES-128-GCM</td><td>none</td></tr>
<tr><td>SHA256</td><td>AES-256-CBC</td><td>none</td></tr>
<tr><td>SHA512</td><td>AES-256-CBC</td><td>none</td></tr>
<tr><td>SHA1</td><td>AES-256-CBC</td><td>none</td></tr>
<tr><td>SHA256</td><td>AES-192-CBC</td><td>none</td></tr>
<tr><td>SHA512</td><td>AES-192-CBC</td><td>none</td></tr>
<tr><td>SHA1</td><td>AES-192-CBC</td><td>none</td></tr>
<tr><td>SHA256</td><td>AES-128-CBC</td><td>none</td></tr>
<tr><td>SHA512</td><td>AES-128-CBC</td><td>none</td></tr>
<tr><td>SHA1</td><td>AES-128-CBC</td><td>none</td></tr>
</table>
 
==== Linux (strongSwan) client configuration ====
 
Download the PKCS12 certificate bundle and move it to /etc/ipsec.d/private directory.
 
Add exported passphrase for the private key to /etc/ipsec.secrets file where "strongSwan_client.p12" is the file name and "1234567890" is the passphrase.
 
<pre>
: P12 strongSwan_client.p12 "1234567890"
</pre>
 
Add a new connection to /etc/ipsec.conf file
 
<pre>
conn "ikev2"
        keyexchange=ikev2
        ike=aes128-sha1-modp2048
        esp=aes128-sha1
        leftsourceip=%modeconfig
        leftcert=strongSwan_client.p12
        leftfirewall=yes
        right=2.2.2.2
        rightid="CN=2.2.2.2"
        rightsubnet=0.0.0.0/0
        auto=add
</pre>
 
You can now restart (or start) the ipsec daemon and initialize the connection
 
<pre>
$ ipsec restart
$ ipsec up ikev2
</pre>
 
===Road Warrior setup with Mode Conf===
 
 
Consider setup where worker need to access other co-workers (workstations) and local office server remotely.
Office has two subnets:
* 192.168.55.0/24 for workstations
* 192.168.66.0/24 network that must not be reachable by RoadWarrior clients
* 10.5.8.0/24 for servers
 
And access to those networks should be secure.
 
[[file:ipsec-road-warrior.png]]
 
Typically in RoadWarrior setups as this it is impossible to know from which address user will connect, so we need to set up <var>generate-policy</var> parameter on the server side. However this leads to other problems, client can generate any policy and access any network in the office. Even set 0.0.0.0/0 and deny internet access to office workers.
 
'''Mode Conf''', '''policy group''' and '''policy templates''' will allow us to overcome these problems.
 
 
====IPsec Server Config====
 
At first we need a pool from which RoadWarrior will will get an address. Typically in office you set up DHCP server for local workstations, the same DHCP pool can be used.
<pre>
/ip pool
add name=ipsec-RW ranges=192.168.77.2-192.168.77.254
</pre>
 
Next we need to set up what settings to send to the client using Mode Conf. 
<pre>
/ip ipsec mode-config
add address-pool=ipsec-RW name=RW-cfg split-include=\
    10.5.8.0/24,192.168.55.0/24
</pre>
As you can see we specified from which pool to give out address and two allowed subnets.
 
 
Now to allow only specific source/destination address in generated policies we will use policy group and create policy templates:
<pre>
/ip ipsec policy group
add name=RoadWarrior
 
/ip ipsec policy
add dst-address=192.168.77.0/24 group=RoadWarrior src-address=10.5.8.0/24 \
    template=yes
add dst-address=192.168.77.0/24 group=RoadWarrior src-address=192.168.55.0/24 \
    template=yes
</pre>
 
 
Now we just add xauth users and peer with enabled Mode Conf and policy group.
<pre>
/ip ipsec user
add name=user1 password=123
add name=user2 password=234
 
/ip ipsec peer
add auth-method=pre-shared-key-xauth generate-policy=port-strict mode-config=RW-cfg \
    policy-template-group=RoadWarrior secret=123 passive=yes
 
</pre>
 
==== Apple iOS (iPhone/iPad) Client ====
 
For iOS devices to be able to connect, '''proposal''' changes are needed:
 
* does not work with 3des encryption algorithm, '''aes-128/256''' works
* auth algorithm must be '''sha1'''
* PFS group must be '''none'''
* lifetime must be '''8 hours'''
 
Example of valid proposal configuration for iOS devices:
<pre>
/ip ipsec proposal
set default enc-algorithms=aes-128-cbc,aes-256-cbc lifetime=8h \
    pfs-group=none
</pre>
 
{{ Note | Iphone does not work with split-include 0.0.0.0/0. If you set 0.0.0.0/0 for older clients traffic will not be sent over the tunnel, for newer ios clients tunnel will not be established.}}
 
==== Android Client Notes ====
 
Android devices are trying to add policy with destination 0.0.0.0/0, so you have to make sure that correct policy template is added.
 
In our case we need to add:
<pre>
/ip ipsec policy
add group=RoadWarrior dst-address=192.168.77.0/24 src-address=0.0.0.0/0 template=yes
</pre>
 
====RouterOS Client Config====
 
<pre>
/ip ipsec peer
add address=2.2.2.2 auth-method=pre-shared-key-xauth generate-policy=port-strict secret=123 \
    xauth-login=user1 xauth-password=123 mode-config=request-only
</pre>
 
====Shrew Client Config====
 
<pre>
n:version:2
n:network-ike-port:500
n:network-mtu-size:1380
n:network-natt-port:4500
n:network-natt-rate:15
n:network-frag-size:540
n:network-dpd-enable:0
n:client-banner-enable:0
n:network-notify-enable:0
n:client-wins-used:0
n:client-wins-auto:1
n:client-dns-used:1
n:client-dns-auto:0
n:client-splitdns-used:1
n:client-splitdns-auto:0
n:phase1-dhgroup:2
n:phase1-life-secs:86400
n:phase1-life-kbytes:0
n:vendor-chkpt-enable:0
n:phase2-life-secs:300
n:phase2-life-kbytes:0
n:policy-nailed:1
n:policy-list-auto:1
n:client-addr-auto:1
s:network-host:2.2.2.2
s:client-auto-mode:pull
s:client-iface:virtual
s:network-natt-mode:disable
s:network-frag-mode:disable
s:auth-method:mutual-psk-xauth
s:ident-client-type:address
s:ident-server-type:address
b:auth-mutual-psk:MTIz
s:phase1-exchange:main
s:phase1-cipher:3des
s:phase1-hash:md5
s:phase2-transform:esp-3des
s:phase2-hmac:sha1
s:ipcomp-transform:disabled
n:phase2-pfsgroup:2
s:policy-level:require
 
</pre>
 
===Basic L2TP/IPsec setup===
 
This example demonstrates how to easily setup L2TP/IPsec server on RouterOS for road warrior connections (works with Windows, Android, iOS, macOS and other vendor L2TP/IPsec implementations).
 
====RouterOS server configuration====
 
First step is to enable L2TP server:
 
<pre>
/interface l2tp-server server
set enabled=yes use-ipsec=required ipsec-secret=mySecret default-profile=default
</pre>


<var>use-ipsec</var> is set to <b>required</b> to make sure that only IPsec encapsulated L2TP connections are accepted.
<var>use-ipsec</var> is set to <b>required</b> to make sure that only IPsec encapsulated L2TP connections are accepted.


Now what it does is enables L2TP server and creates dynamic IPsec peer with specified secret.
Now what it does is enables L2TP server and creates dynamic IPsec peer with specified secret.
 
 
<pre>
<pre>
[admin@MikroTik] /ip ipsec peer> print  
[admin@MikroTik] /ip ipsec peer> print  
  0  D address=0.0.0.0/0 local-address=0.0.0.0 passive=yes port=500  
  0  D address=0.0.0.0/0 local-address=0.0.0.0 passive=yes port=500  
       auth-method=pre-shared-key secret="123" generate-policy=port-strict  
       auth-method=pre-shared-key secret="123" generate-policy=port-strict  
       exchange-mode=main-l2tp send-initial-contact=yes nat-traversal=yes  
       exchange-mode=main-l2tp send-initial-contact=yes nat-traversal=yes  
       hash-algorithm=sha1 enc-algorithm=3des,aes-128,aes-192,aes-256  
       hash-algorithm=sha1 enc-algorithm=3des,aes-128,aes-192,aes-256  
       dh-group=modp1024 lifetime=1d dpd-interval=2m dpd-maximum-failures=5  
       dh-group=modp1024 lifetime=1d dpd-interval=2m dpd-maximum-failures=5  
</pre>
</pre>
 
 
{{Note | Care must be taken if static IPsec peer configuration exists. }}
{{Note | Care must be taken if static IPsec peer configuration exists. }}
 
 
Next step is to create VPN pool and add some users.
Next step is to create VPN pool and add some users.
 
 
<pre>
<pre>
/ip pool add name=vpn-pool range=192.168.99.2-192.168.99.100
/ip pool add name=vpn-pool range=192.168.99.2-192.168.99.100
 
 
/ppp profile
/ppp profile
set default local-address=192.168.99.1 remote-address=vpn-pool
set default local-address=192.168.99.1 remote-address=vpn-pool
 
/ppp secret
add name=user1 password=123
add name=user2 password=234
</pre>
 
Now router is ready to accept L2TP/IPsec client connections.
 
====RouterOS client configuration====
 
For RouterOS to work as L2TP/IPsec client, it is as simple as adding a new L2TP client.
 
<pre>
/interface l2tp-client
add connect-to=1.1.1.1 disabled=no ipsec-secret=mySecret name=l2tp-out1 \
    password=123 use-ipsec=yes user=user1
</pre>
 
It will automatically create dynamic IPsec peer and policy configuration.
 
===Site to Site GRE tunnel over IPsec (IKEv2) using DNS===
 
This example explains how it is possible to establish a secure and encrypted GRE tunnel between two RouterOS devices when one or both sites do not have a static IP address. Before making this configuration possible, it is necessary to have a DNS name assigned to one of the devices which will act as a responder (server). For simplicity, we will use RouterOS built in DDNS service [[Manual:IP/Cloud | IP/Cloud]].
 
[[file:Site-to-site-gre-over-ipsec-example.png]]
 
====Site 1 (server) configuration====
 
This is the side that will listen to incoming connections and act as a responder. We will use [[#Mode_configs | mode config]] to provide an IP address for the second site, but first create a loopback (blank) bridge and assign an IP address to it that will be used later for GRE tunnel establishment.
 
<pre>
/interface bridge
add name=loopback
/ip address
add address=192.168.99.1 interface=loopback
</pre>
 
Continuing with the IPsec configuration, start off by creating new Phase 1 [[#Profiles | profile]] and Phase 2 [[#Proposals | proposal]] entries using stronger or weaker encryption parameters that suits your needs. Note that this configuration example will listen to all incoming IKEv2 requests, meaning the profile configuration will be shared between all other configurations (e.g. RoadWarrior).
 
<pre>
/ip ipsec profile
add dh-group=ecp256,modp2048,modp1024 enc-algorithm=aes-256,aes-192,aes-128 name=ike2
/ip ipsec proposal
add auth-algorithms=null enc-algorithms=aes-128-gcm name=ike2-gre pfs-group=none
</pre>
 
Next, create new [[#Mode_configs | mode config]] entry with <var>responder=yes</var>. This will provide an IP configuration for the other site as well as the host (loopback address) for policy generation.
 
<pre>
/ip ipsec mode-config
add address=192.168.99.2 address-prefix-length=32 name=ike2-gre split-include=192.168.99.1/32 system-dns=no
</pre>
 
It is advised to create a new [[#Groups | policy group]] to separate this configuration from any existing or future IPsec configuration.
 
<pre>
/ip ipsec policy group
add name=ike2-gre
</pre>
 
Now it is time to set up a new [[#Policies | policy]] template that will match the remote peers new dynamic address and the loopback address.
 
<pre>
/ip ipsec policy
add dst-address=192.168.99.2/32 group=ike2-gre proposal=ike2-gre src-address=192.168.99.1/32 template=yes
</pre>
 
The next step is to create [[#Peers | peer]] configuration that will listen for all IKEv2 requests. If you already have such entry, you can skip this step.
 
<pre>
/ip ipsec peer
add exchange-mode=ike2 name=ike2 passive=yes profile=ike2
</pre>
 
Lastly, set up an [[#Identities | identity]] that will match our remote peer by pre-shared-key authentication with specific <var>secret</var>.
 
<pre>
/ip ipsec identity
add generate-policy=port-strict mode-config=ike2-gre peer=ike2 policy-template-group=ike2-gre secret=test
</pre>
 
The server side is now configured and listening to all IKEv2 requests. Please make sure the firewall is not blocking UDP/4500 port.
 
The last step is to create the GRE interface itself. This can also be done later when IPsec connection is established from the client side.
 
<pre>
/interface gre
add local-address=192.168.99.1 name=gre-tunnel1 remote-address=192.168.99.2
</pre>
 
====Site 2 (client) configuration====
 
Similarly to server configuration, start off by creating new Phase 1 [[#Profiles | profile]] and Phase 2 [[#Proposals | proposal]] configurations. Since this side will be the initiator, we can use more specific profile configuration to control which exact encryption parameters are used, just make sure they overlap with what is configured on the server side.
 
<pre>
/ip ipsec profile
add dh-group=ecp256 enc-algorithm=aes-256 name=ike2-gre
/ip ipsec proposal
add auth-algorithms=null enc-algorithms=aes-128-gcm name=ike2-gre pfs-group=none
</pre>
 
Next, create new [[#Mode_configs | mode config]] entry with <var>responder=no</var>. This will make sure the peer requests IP and split-network configuration from the server.
 
<pre>
/ip ipsec mode-config
add name=ike2-gre responder=no
</pre>
 
It is also advised to create a new [[#Groups | policy group]] to separate this configuration from any existing or future IPsec configuration.
 
<pre>
/ip ipsec policy group
add name=ike2-gre
</pre>
 
Create a new [[#Policies | policy]] template on the client side as well.
 
<pre>
/ip ipsec policy
add dst-address=192.168.99.1/32 group=ike2-gre proposal=ike2-gre src-address=192.168.99.2/32 template=yes
</pre>
 
Move on to [[#Peers | peer]] configuration. Now we can specify the DNS name for the server under <var>address</var> parameter. Obviously, you can use an IP address as well.
 
<pre>
/ip ipsec peer
add address=n.mynetname.net exchange-mode=ike2 name=p1.ez profile=ike2-gre
</pre>
 
Lastly, create an [[#Identities | identity]] for our newly created peer.
 
<pre>
/ip ipsec identity
add generate-policy=port-strict mode-config=ike2-gre peer=p1.ez policy-template-group=ike2-gre secret=test
</pre>
 
If everything was done properly, there should be a new dynamic policy present.
 
<pre>
/ip ipsec policy print
Flags: T - template, X - disabled, D - dynamic, I - invalid, A - active, * - default
0 T * group=default src-address=::/0 dst-address=::/0 protocol=all proposal=default template=yes
 
1 T  group=ike2-gre src-address=192.168.99.2/32 dst-address=192.168.99.1/32 protocol=all proposal=ike2-gre template=yes


/ppp secret
2  DA  src-address=192.168.99.2/32 src-port=any dst-address=192.168.99.1/32 dst-port=any protocol=all action=encrypt level=unique ipsec-protocols=esp
add name=user1 password=123
      tunnel=yes sa-src-address=172.17.2.1 sa-dst-address=172.17.2.2 proposal=ike2-gre ph2-count=1
add name=user2 password=234
</pre>
</pre>


Now router is ready to accept L2TP/IPsec client connections.
A secure tunnel is now established between both sites which will encrypt all traffic between 192.168.99.2 <=> 192.168.99.1 addresses. We can use these addresses to create a GRE tunnel.
 
====RouterOS client configuration====
 
For RouterOS to work as L2TP/IPsec client, it is as simple as adding a new L2TP client.


<pre>
<pre>
/interface l2tp-client
/interface gre
add connect-to=1.1.1.1 disabled=no ipsec-secret=mySecret name=l2tp-out1 \
add local-address=192.168.99.2 name=gre-tunnel1 remote-address=192.168.99.1
    password=123 use-ipsec=yes user=user1
</pre>
</pre>


It will automatically create dynamic IPsec peer and policy configuration.
===IKEv2 EAP between NordVPN and RouterOS===
 
===Connecting with Shrew Client and allowing only Encrypted traffic===
 
* [[IPSEC_between_Mikrotik_router_and_a_Shrew_client | See example here]]


[[IKEv2_EAP_between_NordVPN_and_RouterOS | Example available here]]


==Troubleshooting/FAQ==
==Troubleshooting/FAQ==

Latest revision as of 13:34, 1 April 2021

Applies to RouterOS: v6.0 +

Warning: Article is migrated to our new manual: https://help.mikrotik.com/docs/display/ROS/IPsec


Summary

Sub-menu: /ip ipsec
Package required: security


Internet Protocol Security (IPsec) is a set of protocols defined by the Internet Engineering Task Force (IETF) to secure packet exchange over unprotected IP/IPv6 networks such as Internet.


IPsec protocol suite can be divided in following groups:

  • Internet Key Exchange (IKE) protocols. Dynamically generates and distributes cryptographic keys for AH and ESP.
  • Authentication Header (AH) RFC 4302
  • Encapsulating Security Payload (ESP) RFC 4303

Internet Key Exchange Protocol (IKE)

The Internet Key Exchange (IKE) is a protocol that provides authenticated keying material for Internet Security Association and Key Management Protocol (ISAKMP) framework. There are other key exchange schemes that work with ISAKMP, but IKE is the most widely used one. Together they provide means for authentication of hosts and automatic management of security associations (SA).

Most of the time IKE daemon is doing nothing. There are two possible situations when it is activated:

There is some traffic caught by a policy rule which needs to become encrypted or authenticated, but the policy doesn't have any SAs. The policy notifies IKE daemon about that, and IKE daemon initiates connection to remote host. IKE daemon responds to remote connection. In both cases, peers establish connection and execute 2 phases:

  • Phase 1 - The peers agree upon algorithms they will use in the following IKE messages and authenticate. The keying material used to derive keys for all SAs and to protect following ISAKMP exchanges between hosts is generated also. This phase should match following settings:
    • authentication method
    • DH group
    • encryption algorithm
    • exchange mode
    • hash alorithm
    • NAT-T
    • DPD and lifetime (optional)
  • Phase 2 - The peers establish one or more SAs that will be used by IPsec to encrypt data. All SAs established by IKE daemon will have lifetime values (either limiting time, after which SA will become invalid, or amount of data that can be encrypted by this SA, or both). This phase should match following settings:
    • Ipsec protocol
    • mode (tunnel or transport)
    • authentication method
    • PFS (DH) group
    • lifetime

Note: There are two lifetime values - soft and hard. When SA reaches it's soft lifetime treshold, the IKE daemon receives a notice and starts another phase 2 exchange to replace this SA with fresh one. If SA reaches hard lifetime, it is discarded.


Warning: Phase 1 is not re-keyed if DPD is disabled when lifetime expires, only phase 2 is re-keyed. To force phase 1 re-key, enable DPD.


Warning: PSK authentication was known to be vulnerable against Offline attacks in "aggressive" mode, however recent discoveries indicate that offline attack is possible also in case of "main" and "ike2" exchange modes. General recommendation is to avoid using PSK authentication method.


IKE can optionally provide a Perfect Forward Secrecy (PFS), which is a property of key exchanges, that, in turn, means for IKE that compromising the long term phase 1 key will not allow to easily gain access to all IPsec data that is protected by SAs established through this phase 1. It means an additional keying material is generated for each phase 2.

Generation of keying material is computationally very expensive. Exempli gratia, the use of modp8192 group can take several seconds even on very fast computer. It usually takes place once per phase 1 exchange, which happens only once between any host pair and then is kept for long time. PFS adds this expensive operation also to each phase 2 exchange.

Diffie-Hellman Groups

Diffie-Hellman (DH) key exchange protocol allows two parties without any initial shared secret to create one securely. The following Modular Exponential (MODP) and Elliptic Curve (EC2N) Diffie-Hellman (also known as "Oakley") Groups are supported:

Diffie-Hellman GroupNameReference
Group 1768 bit MODP groupRFC 2409
Group 21024 bits MODP groupRFC 2409
Group 3EC2N group on GP(2^155)RFC 2409
Group 4EC2N group on GP(2^185)RFC 2409
Group 51536 bits MODP groupRFC 3526
Group 142048 bits MODP groupRFC 3526
Group 153072 bits MODP groupRFC 3526
Group 164096 bits MODP groupRFC 3526
Group 176144 bits MODP groupRFC 3526
Group 188192 bits MODP groupRFC 3526
Group 19256 bits random ECP groupRFC 5903
Group 20384 bits random ECP groupRFC 5903
Group 21521 bits random ECP groupRFC 5903

More on standards can be found here.

IKE Traffic

To avoid problems with IKE packets hit some SPD rule and require to encrypt it with not yet established SA (that this packet perhaps is trying to establish), locally originated packets with UDP source port 500 are not processed with SPD. The same way packets with UDP destination port 500 that are to be delivered locally are not processed in incoming policy check.


Setup Procedure

To get IPsec to work with automatic keying using IKE-ISAKMP you will have to configure policy, peer and proposal (optional) entries.

Warning: Ipsec is very sensitive to time changes. If both ends of the IpSec tunnel are not synchronizing time equally(for example, different NTP servers not updating time with the same timestamp), tunnels will break and will have to be established again.



EAP Authentication methods

Outer Auth Inner Auth
EAP-GTC
EAP-MD5
EAP-MSCHAPv2
EAP-PEAPv0

EAP-MSCHAPv2
EAP-GPSK
EAP-GTC
EAP-MD5
EAP-TLS

EAP-SIM
EAP-TLS
EAP-TTLS

PAP
CHAP
MS-CHAP
MS-CHAPv2
EAP-MSCHAPv2
EAP-GTC
EAP-MD5
EAP-TLS

EAP-TLS on Windows is called "Smart Card or other certificate".

Authentication Header (AH)

AH is a protocol that provides authentication of either all or part of the contents of a datagram through the addition of a header that is calculated based on the values in the datagram. What parts of the datagram are used for the calculation, and the placement of the header, depends whether tunnel or transport mode is used.


The presence of the AH header allows to verify the integrity of the message, but doesn't encrypt it. Thus, AH provides authentication but not privacy. Another protocol (ESP) is considered superior, it provides data privacy and also its own authentication method.


RouterOS supports the following authentication algorithms for AH:

  • SHA2 (256, 512)
  • SHA1
  • MD5


Transport mode

In transport mode AH header is inserted after IP header. IP data and header is used to calculate authentication value. IP fields that might change during transit, like TTL and hop count, are set to zero values before authentication.


Tunnel mode

In tunnel mode original IP packet is encapsulated within a new IP packet. All of the original IP packet is authenticated.

Encapsulating Security Payload (ESP)

Encapsulating Security Payload (ESP) uses shared key encryption to provide data privacy. ESP also supports its own authentication scheme like that used in AH.

ESP packages its fields in a very different way than AH. Instead of having just a header, it divides its fields into three components:

  • ESP Header - Comes before the encrypted data and its placement depends on whether ESP is used in transport mode or tunnel mode.
  • ESP Trailer - This section is placed after the encrypted data. It contains padding that is used to align the encrypted data.
  • ESP Authentication Data - This field contains an Integrity Check Value (ICV), computed in a manner similar to how the AH protocol works, for when ESP's optional authentication feature is used.

Transport mode

In transport mode ESP header is inserted after original IP header. ESP trailer and authentication value is added to the end of the packet. In this mode only IP payload is encrypted and authenticated, IP header is not secured.

Tunnel mode

In tunnel mode original IP packet is encapsulated within a new IP packet thus securing IP payload and IP header.

Encryption algorithms

RouterOS ESP supports various encryption and authentication algorithms.

Authentication:

  • MD5
  • SHA1
  • SHA2 (256-bit, 512-bit)

Encryption:

  • AES - 128-bit, 192-bit and 256-bit key AES-CBC, AES-CTR and AES-GCM algorithms;
  • Blowfish - added since v4.5
  • Twofish - added since v4.5
  • Camellia - 128-bit, 192-bit and 256-bit key Camellia encryption algorithm added since v4.5
  • DES - 56-bit DES-CBC encryption algorithm;
  • 3DES - 168-bit DES encryption algorithm;

Hardware acceleration

Hardware acceleration allows to do faster encryption process by using built-in encryption engine inside CPU.

RouterBoard DES and 3DES AES-CBC AES-CTR AES-GCM
MD5 SHA1 SHA256 SHA512 MD5 SHA1 SHA256 SHA512 MD5 SHA1 SHA256 SHA512 MD5 SHA1 SHA256 SHA512
RBcAPGi-5acD2nD (cAP ac) * noyesyesno noyesyesno noyesyesno nononono
RBD23UGS-5HPacD2HnD-NM (NetMetal ac²) * noyesyesno noyesyesno noyesyesno nononono
RBD25G-5HPacQD2HPnD (Audience) * noyesyesno noyesyesno noyesyesno nononono
RBD25GR-5HPacQD2HPnD&R11e-LTE6 (Audience LTE6 kit) * noyesyesno noyesyesno noyesyesno nononono
RBD52G-5HacD2HnD (hAP ac2) * noyesyesno noyesyesno noyesyesno nononono
RBD53GR-5HacD2HnD&R11e-LTE6 (hAP ac3 LTE6 kit) * noyesyesno noyesyesno noyesyesno nononono
RBD53G-5HacD2HnD-TC&EG12-EA (Chateau LTE12) * noyesyesno noyesyesno noyesyesno nononono
RBDiscG-5acD (DISC Lite5 ac) * noyesyesno noyesyesno noyesyesno nononono
RBLDFG-5acD (LDF 5 ac) * noyesyesno noyesyesno noyesyesno nononono
RBLHGG-5acD (LHG 5 ac) * noyesyesno noyesyesno noyesyesno nononono
RBLHGG-5HPacD2HPnD-XL (LHG XL 52 ac) * noyesyesno noyesyesno noyesyesno nononono
RBLHGG-5acD-XL (LHG XL 5 ac) * noyesyesno noyesyesno noyesyesno nononono
RBLHGG-60ad (Wireless Wire Dish) * noyesyesno noyesyesno noyesyesno nononono
RBLtAP-2HnD (LtAP) **** yesyesyesno yesyesyesno nononono nononono
RBLtAP-2HnD&R11e-LTE (LtAP LTE kit) **** yesyesyesno yesyesyesno nononono nononono
RBLtAP-2HnD&R11e-4G (LtAP 4G kit) **** yesyesyesno yesyesyesno nononono nononono
RBLtAP-2HnD&R11e-LTE6 (LtAP LTE6 kit) **** yesyesyesno yesyesyesno nononono nononono
RBM11G **** yesyesyesno yesyesyesno nononono nononono
RBM33G **** yesyesyesno yesyesyesno nononono nononono
RBSXTsqG-5acD (SXTsq 5 ac) * noyesyesno noyesyesno noyesyesno nononono
RBwAPG-60ad (wAP 60G) * noyesyesno noyesyesno noyesyesno nononono
RBwAPG-60ad-A (wAP 60G AP) * noyesyesno noyesyesno noyesyesno nononono
RBwAPGR-5HacD2HnD (wAP R ac) * noyesyesno noyesyesno noyesyesno nononono
RBwAPGR-5HacD2HnD&R11e-LTE (wAP ac LTE kit) * noyesyesno noyesyesno noyesyesno nononono
RBwAPGR-5HacD2HnD&R11e-4G (wAP ac 4G kit) * noyesyesno noyesyesno noyesyesno nononono
RBwAPGR-5HacD2HnD&R11e-LTE6 (wAP ac LTE6 kit) * noyesyesno noyesyesno noyesyesno nononono
RB450Gx4 * noyesyesno noyesyesno noyesyesno nononono
RB750Gr3 (hEX) **** yesyesyesno yesyesyesno nononono nononono
RB760iGS (hEX S) **** yesyesyesno yesyesyesno nononono nononono
RB850Gx2 ** nononono yesyesyesyes nononono nononono
RB1100AHx2 yesyesyesno yesyesyesyes nononono nononono
RB1100AHx4 and RB1100AHx4 Dude Edition yesyesyesyes yesyesyesyes yesyesyesyes yesyesyesyes
RB1200 *** nononono yesyesyesyes yesyesyesyes nononono
RB3011UiAS-RM * noyesyesno noyesyesno noyesyesno nononono
RB4011iGS+RM and RB4011iGS+5HacQ2HnD-IN yesyesyesyes yesyesyesyes yesyesyesyes yesyesyesyes
CCR2004-1G-12S+2XS yesyesyesyes yesyesyesyes yesyesyesyes yesyesyesyes
Cloud Core Router series yesyesyesno yesyesyesno yesyesyesno nononono
x86 (AES-NI) *** nononono yesyesyesyes yesyesyesyes yesyesyesyes

* supported only 128 bit and 256 bit key sizes

** only manufactured since 2016, serial numbers that begin with number 5 and 7

*** AES-CBC and AES-CTR only encryption is accelerated, hashing done in software

**** DES is not supported, only 3DES and AES-CBC

IPsec throughput results of various encryption and hash algorithm combinations are published on MikroTik products page. When testing throughput, please follow the guidelines available in the Traffic Generator manual page

Policies

Sub-menu: /ip ipsec policy


Policy table is used to determine whether security settings should be applied to a packet.


Properties

Property Description
action (discard | encrypt | none; Default: encrypt) Specifies what to do with packet matched by the policy.
  • none - pass the packet unchanged.
  • discard - drop the packet.
  • encrypt - apply transformations specified in this policy and it's SA.
comment (string; Default: ) Short description of the policy.
disabled (yes | no; Default: no) Whether policy is used to match packets.
dst-address (IP/IPv6 prefix; Default: 0.0.0.0/32) Destination address to be matched in packets. Applicable when tunnel mode (tunnel=yes) or template (template=yes) is used.
dst-port (integer:0..65535 | any; Default: any) Destination port to be matched in packets. If set to any all ports will be matched.
group (string; Default: default) Name of the policy group to which this template is assigned.
ipsec-protocols (ah | esp; Default: esp) Specifies what combination of Authentication Header and Encapsulating Security Payload protocols you want to apply to matched traffic.
level (require | unique | use; Default: require) Specifies what to do if some of the SAs for this policy cannot be found:
  • use - skip this transform, do not drop packet and do not acquire SA from IKE daemon;
  • require - drop packet and acquire SA;
  • unique - drop packet and acquire a unique SA that is only used with this particular policy. It is used in setups where multiple clients can sit behind one public IP address (clients behind NAT).
peer (string; Default: ) Name of the peer on which the policy applies.
proposal (string; Default: default) Name of the proposal template that will be sent by IKE daemon to establish SAs for this policy.
protocol (all | egp | ggp| icmp | igmp | ...; Default: all) IP packet protocol to match.
src-address (ip/ipv6 prefix; Default: 0.0.0.0/32) Source address to be matched in packets. Applicable when tunnel mode (tunnel=yes) or template (template=yes) is used.
src-port (any | integer:0..65535; Default: any) Source port to be matched in packets. If set to any all ports will be matched.
template (yes | no; Default: no) Creates a template and assigns it to specified policy group.

Following parameters are used by template:

  • group - name of the policy group to which this template is assigned;
  • src-address, dst-address - Requested subnet must match in both directions(for example 0.0.0.0/0 to allow all);
  • protocol - protocol to match, if set to all, then any protocol is accepted;
  • proposal - SA parameters used for this template;
  • level - useful when unique is required in setups with multiple clients behind NAT.
tunnel (yes | no; Default: no) Specifies whether to use tunnel mode.


Read only properties

Property Description
active (yes | no) Whether this policy is currently in use.
default (yes | no) Whether this is a default system entry.
dynamic (yes | no) Whether this is a dynamically added or generated entry.
invalid (yes | no) Whether this policy is invalid - possible cause is duplicate policy with the same src-address and dst-address.
ph2-count (integer) Number of active phase 2 sessions associated with the policy.
ph2-state (expired | no-phase2 | established) Indication of the progress of key establishing.
sa-dst-address (ip/ipv6 address; Default: ::) SA destination IP/IPv6 address (remote peer).
sa-src-address (ip/ipv6 address; Default: ::) SA source IP/IPv6 address (local peer).


Warning: policy order is important starting form v6.40. Now it works similar as firewall filters where policies are executed from top to bottom (priority parameter is removed).


Note: All packets are IPIP encapsulated in tunnel mode, and their new IP header's src-address and dst-address are set to sa-src-address and sa-dst-address values of this policy. If you do not use tunnel mode (id est you use transport mode), then only packets whose source and destination addresses are the same as sa-src-address and sa-dst-address can be processed by this policy. Transport mode can only work with packets that originate at and are destined for IPsec peers (hosts that established security associations). To encrypt traffic between networks (or a network and a host) you have to use tunnel mode.


Statistics

Sub-menu: /ip ipsec statistics


This menu shows various IPsec statistics and errors.


Read only properties

Property Description
in-errors (integer) All inbound errors that are not matched by other counters.
in-buffer-errors (integer) No free buffer.
in-header-errors (integer) Header error.
in-no-states (integer) No state is found i.e. either inbound SPI, address, or IPsec protocol at SA is wrong.
in-state-protocol-errors (integer) Transformation protocol specific error, for example SA key is wrong or hardware accelerator is unable to handle amount of packets.
in-state-mode-errors (integer) Transformation mode specific error.
in-state-sequence-errors (integer) Sequence number is out of window.
in-state-expired (integer) State is expired.
in-state-mismatches (integer) State has mismatched option, for example UDP encapsulation type is mismatched.
in-state-invalid (integer) State is invalid.
in-template-mismatches (integer) No matching template for states, e.g. inbound SAs are correct but SP rule is wrong. Possible cause is mismatched sa-source or sa-destination address.
in-no-policies (integer) No policy is found for states, e.g. inbound SAs are correct but no SP is found.
in-policy-blocked (integer) Policy discards.
in-policy-errors (integer) Policy errors.
out-errors (integer) All outbound errors that are not matched by other counters.
out-bundle-errors (integer) Bundle generation error.
out-bundle-check-errors (integer) Bundle check error.
out-no-states (integer) No state is found.
out-state-protocol-errors (integer) Transformation protocol specific error.
out-state-mode-errors (integer) Transformation mode specific error.
out-state-sequence-errors (integer) Sequence errors, for example sequence number overflow.
out-state-expired (integer) State is expired.
out-policy-blocked (integer) Policy discards.
out-policy-dead (integer) Policy is dead.
out-policy-errors (integer) Policy error.

Proposals

Sub-menu: /ip ipsec proposal


Proposal information that will be sent by IKE daemons to establish SAs for certain policy.


Properties

Property Description
auth-algorithms (md5|null|sha1|sha256|sha512; Default: sha1) Allowed algorithms for authorization. SHA (Secure Hash Algorithm) is stronger, but slower. MD5 uses 128-bit key, sha1-160bit key.
comment (string; Default: )
disabled (yes | no; Default: no) Whether item is disabled.
enc-algorithms (null|des|3des|aes-128-cbc|aes-128-cbc|aes-128gcm|aes-192-cbc|aes-192-ctr|aes-192-gcm|aes-256-cbc|aes-256-ctr|aes-256-gcm|blowfish|camellia-128|camellia-192|camellia-256|twofish; Default: aes-256-cbc,aes-192-cbc,aes-128-cbc) Allowed algorithms and key lengths to use for SAs.
lifetime (time; Default: 30m) How long to use SA before throwing it out.
name (string; Default: )
pfs-group (ec2n155 | ec2n185 | ecp256 | ecp384 | ecp521 | modp768 | modp1024 | modp1536 | modp2048 | modp3072 | modp4096 | modp6144 | modp8192 | none; Default: modp1024) Diffie-Helman group used for Perfect Forward Secrecy.


Read only properties

Property Description
default (yes | no) Whether this is a default system entry.

Groups

Sub-menu: /ip ipsec policy group


In this menu it is possible to create additional policy groups used by policy templates.


Properties

Property Description
name (string; Default: )
comment (string; Default: )

Peers

Sub-menu: /ip ipsec peer


Peer configuration settings are used to establish connections between IKE daemons. This connection then will be used to negotiate keys and algorithms for SAs. Exchange mode is the only unique identifier between the peers, meaning that there can be multiple peer configurations with the same remote-address as long as different exchange-mode is used.


Properties

Property Description
address (IP/IPv6 Prefix; Default: 0.0.0.0/0) If remote peer's address matches this prefix, then the peer configuration is used in authentication and establishment of Phase 1. If several peer's addresses match several configuration entries, the most specific one (i.e. the one with largest netmask) will be used.
comment (string; Default: ) Short description of the peer.
disabled (yes | no; Default: no) Whether peer is used to match remote peer's prefix.
exchange-mode (aggressive | base | main | ike2; Default: main) Different ISAKMP phase 1 exchange modes according to RFC 2408. main mode relaxes rfc2409 section 5.4, to allow pre-shared-key authentication in main mode. ike2 mode enables Ikev2 RFC 7296. Parameters that are ignored by IKEv2 proposal-check, compatibility-options, lifebytes, dpd-maximum-failures, nat-traversal.
local-address (IP/IPv6 Address; Default: ) Routers local address on which Phase 1 should be bounded to.
name (string; Default: )
passive (yes | no; Default: no) When passive mode is enabled will wait for remote peer to initiate IKE connection. Enabled passive mode also indicates that peer is xauth responder, and disabled passive mode - xauth initiator. When passive mode is disabled peer will try to establish not only phase1, but also phase2 automatically, if policies are configured or created during phase1.
port (integer:0..65535; Default: 500) Communication port used (when router is initiator) to connect to remote peer in cases if remote peer uses non-default port.
profile (string; Default: default) Name of the profile template that will be used during IKE negotiation.
send-initial-contact (yes | no; Default: yes) Specifies whether to send "initial contact" IKE packet or wait for remote side, this packet should trigger removal of old peer SAs for current source address. Usually in road warrior setups clients are initiators and this parameter should be set to no. Initial contact is not sent if modecfg or xauth is enabled for ikev1.


Read only properties

Property Description
dynamic (yes | no) Whether this is a dynamically added entry by different service (e.g L2TP).
responder (yes | no) Whether this peer will act as a responder only (listen to incoming requests) and not initiate a connection.


Identities

Identities are configuration parameters that are specific to the remote peer. Main purpose of an identity is to handle authentication and verify peer's integrity.

Properties

Property Description
auth-method (digital-signature | eap | eap-radius | pre-shared-key | pre-shared-key-xauth | rsa-key | rsa-signature-hybrid; Default: pre-shared-key) Authentication method:
  • digital-signature - authenticate using a pair of RSA certificates;
  • eap - IKEv2 EAP authentication for initiator (peer with netmask of /32). Must be used together with eap-methods;
  • eap-radius - IKEv2 EAP RADIUS passthrough authentication for responder (RFC 3579). Server certificate in this case is required. If server certificate is not specified then only clients supporting EAP-only (RFC 5998) will be able to connect. Note that EAP method should be compatible with EAP-only;
  • pre-shared-key - authenticate by a password (pre-shared secret) string shared between the peers (not recommended since offline attack on pre-shared key is possible);
  • rsa-key - authenticate using a RSA key imported in keys menu. Only supported in IKEv1;
  • pre-shared-key-xauth - authenticate by a password (pre-shared secret) string shared between the peers + XAuth username and password. Only supported in IKEv1;
  • rsa-signature-hybrid - responder certificate authentication with initiator XAuth. Only supported in IKEv1.
certificate (string; Default: ) Name of a certificate listed in System/Certificates (signing packets; the certificate must have private key). Applicable if digital signature authentication method (auth-method=digital-signature) or EAP (auth-method=eap) is used.
comment (string; Default: ) Short description of the identity.
disabled (yes | no; Default: no) Whether identity is used to match remote peer.
eap-methods (eap-mschapv2 | eap-peap | eap-tls | eap-ttls; Default: eap-tls) All EAP methods requires whole certificate chain including intermediate and root CA certificates to be present in System/Certificates menu. Also username and password (if required by authentication server) must be specified. Multiple EAP methods may be specified and will be used in specified order. Currently supported EAP methods:
  • eap-mschapv2;
  • eap-peap - also known as PEAPv0/EAP-MSCHAPv2;
  • eap-tls - requires additional client certificate specified under certificate parameter;
  • eap-ttls.
generate-policy (no | port-override | port-strict; Default: no) Allow this peer to establish SA for non-existing policies. Such policies are created dynamically for the lifetime of SA. Automatic policies allows, for example, to create IPsec secured L2TP tunnels, or any other setup where remote peer's IP address is not known at the configuration time.
  • no - do not generate policies;
  • port-override - generate policies and force policy to use any port (old behavior);
  • port-strict - use ports from peer's proposal, which should match peer's policy.
key (string; Default: ) Name of the private key from keys menu. Applicable if RSA key authentication method (auth-method=rsa-key) is used.
match-by (remote-id | certificate; Default: remote-id) Defines the logic used for peer's identity validation.
  • remote-id - will verify the peer's ID according to remote-id setting.
  • certificate will verify the peer's certificate with what is specified under remote-certificate setting.
mode-config (none | *request-only | string; Default: none) Name of the configuration parameters from mode-config menu. When parameter is set mode-config is enabled.
my-id (auto | address | fqdn | user-fqdn | key-id; Default: auto) On initiator, this controls what ID_i is sent to the responder. On responder, this controls what ID_r is sent to the initiator. In IKEv2, responder also expects this ID in received ID_r from initiator.
  • auto - tries to use correct ID automatically;
  • address - IP address is used as ID;
  • fqdn - fully qualified domain name;
  • key-id - use the specified key ID for the identity;
  • user fqdn - specifies a fully-qualified username string, for example, "user@domain.com".
notrack-chain (string; Default: ) Adds IP/Firewall/Raw rules matching IPsec policy to specified chain. Use together with generate-policy.
password (string; Default: ) XAuth or EAP password. Applicable if pre-shared key with XAuth authentication method (auth-method=pre-shared-key-xauth) or EAP (auth-method=eap) is used.
peer (string; Default: ) Name of the peer on which the identity applies.
policy-template-group (none | string; Default: default) If generate-policy is enabled, traffic selectors are checked against templates from the same group. If none of the templates match, Phase 2 SA will not be established.
remote-certificate (string; Default: ) Name of a certificate (listed in System/Certificates) for authenticating the remote side (validating packets; no private key required). If remote-certificate is not specified then received certificate from remote peer is used and checked against CA in certificate menu. Proper CA must be imported in certificate store. If remote-certificate and match-by=certificate is specified, only the specific client certificate will be matched. Applicable if digital signature authentication method (auth-method=digital-signature) is used.
remote-id (auto | fqdn | user-fqdn | key-id | ignore; Default: auto) This parameter controls what ID value to expect from the remote peer. Note that all types except for ignore will verify remote peer's ID with received certificate. In case when the peer sends certificate name as its ID, it is checked against the certificate, else the ID is checked against Subject Alt. Name.
  • auto - accept all ID's;
  • fqdn - fully qualified domain name. Only supported in IKEv2;
  • user fqdn - a fully-qualified username string, for example, "user@domain.com". Only supported in IKEv2;
  • key-id - specific key ID for the identity. Only supported in IKEv2;
  • ignore - do not verify received ID with certificate (dangerous).
remote-key (string; Default: ) Name of the public key from keys menu. Applicable if RSA key authentication method (auth-method=rsa-key) is used.
secret (string; Default: ) Secret string. If it starts with '0x', it is parsed as a hexadecimal value. Applicable if pre-shared key authentication method (auth-method=pre-shared-key and auth-method=pre-shared-key-xauth) is used.
username (string; Default: ) XAuth or EAP username. Applicable if pre-shared key with XAuth authentication method (auth-method=pre-shared-key-xauth) or EAP (auth-method=eap) is used.


Read only properties

Property Description
dynamic (yes | no) Whether this is a dynamically added entry by different service (e.g L2TP).

Profiles

Profiles defines a set of parameters that will be used for IKE negotiation during Phase 1. These parameters may be common with other peer configurations.

Properties

Property Description
dh-group (modp768 | modp1024 | ec2n155 | ec2n185 | modp1536 | modp2048 | modp3072 | modp4096 | modp6144 | modp8192 | ecp256 | ecp384 | ecp521; Default: modp1024,modp2048) Diffie-Hellman group (cipher strength)
dpd-interval (time | disable-dpd; Default: 2m) Dead peer detection interval. If set to disable-dpd, dead peer detection will not be used.
dpd-maximum-failures (integer: 1..100; Default: 5) Maximum count of failures until peer is considered to be dead. Applicable if DPD is enabled.
enc-algorithm (3des | aes-128 | aes-192 | aes-256 | blowfish | camellia-128 | camellia-192 | camellia-256 | des; Default: aes-128) List of encryption algorithms that will be used by the peer.
hash-algorithm (md5 | sha1 | sha256 | sha512; Default: sha1) Hashing algorithm. SHA (Secure Hash Algorithm) is stronger, but slower. MD5 uses 128-bit key, sha1-160bit key.
lifebytes (Integer: 0..4294967295; Default: 0) Phase 1 lifebytes is used only as administrative value which is added to proposal. Used in cases if remote peer requires specific lifebytes value to establish phase 1.
lifetime (time; Default: 1d) Phase 1 lifetime: specifies how long the SA will be valid.
name (string; Default: )
nat-traversal (yes | no; Default: yes) Use Linux NAT-T mechanism to solve IPsec incompatibility with NAT routers inbetween IPsec peers. This can only be used with ESP protocol (AH is not supported by design, as it signs the complete packet, including IP header, which is changed by NAT, rendering AH signature invalid). The method encapsulates IPsec ESP traffic into UDP streams in order to overcome some minor issues that made ESP incompatible with NAT.
proposal-check (claim | exact | obey | strict; Default: obey) Phase 2 lifetime check logic:
  • claim - take shortest of proposed and configured lifetimes and notify initiator about it
  • exact - require lifetimes to be the same
  • obey - accept whatever is sent by an initiator
  • strict - if proposed lifetime is longer than the default then reject proposal otherwise accept proposed lifetime

Active Peers

Sub-menu: /ip ipsec active-peers


This menu provides various statistics about remote peers that currently have established phase 1 connection.


Read only properties

Property Description
dynamic-address (ip/ipv6 address) Dynamically assigned IP address by mode config
last-seen (time) Duration since last message received by this peer.
local-address (ip/ipv6 address) Local address on the router used by this peer.
natt-peer (yes | no) Whether NAT-T is used for this peer.
ph2-total (integer) Total amount of active IPsec security associations.
remote-address (ip/ipv6 address) Remote peer's ip/ipv6 address.
responder (yes | no) Whether the connection is initiated by remote peer.
rx-bytes (integer) Total amount of bytes received from this peer.
rx-packets (integer) Total amount of packets received from this peer.
side (initiator | responder) Shows which side initiated the Phase1 negotiation.
state (string) State of phase 1 negotiation with the peer. For example when phase1 and phase 2 are negotiated it will show state "established".
tx-bytes (integer) Total amount of bytes transmitted to this peer.
tx-packets (integer) Total amount of packets transmitted to this peer.
uptime (time) How long peers are in established state.


Commands

Property Description
kill-connections () Manually disconnects all remote peers.

Mode configs

Sub-menu: /ip ipsec mode-config


ISAKMP and IKEv2 configuration attributes are configured in this menu.


Properties

Property Description
address-pool (none | string; Default: ) Name of the address pool from which responder will try to assign address if mode-config is enabled.
address-prefix-length (integer [1..32]; Default: ) Prefix length (netmask) of assigned address from the pool.
comment (string; Default: )
name (string; Default: )
responder (yes | no; Default: no) Specifies whether the configuration will work as an initiator (client) or responder (server). Initiator will request for mode-config parameters from responder.
split-include (list of IP prefix; Default: ) List of subnets in CIDR format, which to tunnel. Subnets will be sent to the peer using CISCO UNITY extension, remote peer will create specific dynamic policies.
src-address-list (address list; Default: ) Specifying an address list will generate dynamic source NAT rules. This parameter is only available with responder=no. RoadWarrior client with NAT
static-dns (list of IP; Default: ) Manually specified DNS server's IP address to be sent to the client.
system-dns (yes | no; Default: ) When this option is enabled DNS addresses will be taken from /ip dns.


Read only properties

Property Description
default (yes | no) Whether this is a default system entry.

Note: Not all IKE implementations support multiple split networks provided by split-include option.


Note: If RouterOS client is initiator, it will always send CISCO UNITY extension, and RouterOS supports only split-include from this extension.


Note: It is not possible to use system-dns and static-dns at the same time.


Installed SAs

Sub-menu: /ip ipsec installed-sa


This menu provides information about installed security associations including the keys.


Read only properties

Property Description
AH (yes | no) Whether AH protocol is used by this SA.
ESP (yes | no) Whether ESP protocol is used by this SA.
add-lifetime (time/time) Added lifetime for the SA in format soft/hard:
  • soft - time period after which ike will try to establish new SA;
  • hard - time period after which SA is deleted.
addtime (time) Date and time when this SA was added.
auth-algorithm (md5 | null | sha1 | ...) Currently used authentication algorithm.
auth-key (string) Used authentication key.
current-bytes (64-bit integer) Number of bytes seen by this SA.
dst-address (IP) Destination address of this SA.
enc-algorithm (des | 3des | aes-cbc | ...) Currently used encryption algorithm.
enc-key (string) Used encryption key.
enc-key-size (number) Used encryption key length.
expires-in (yes | no) Time left until rekeying.
hw-aead (yes | no) Whether this SA is hardware accelerated.
replay (integer) Size of replay window in bytes.
spi (string) Security Parameter Index identification tag
src-address (IP) Source address of this SA.
state (string) Shows the current state of the SA ("mature", "dying" etc)


Commands

Property Description
flush () Manually removes all installed security associations.

Keys

Sub-menu: /ip ipsec key


This menu lists all imported public andprivate keys, that can be used for peer authentication. Menu has several commands to work with keys.


Properties

Property Description
name (string; Default: )


Read only properties

Property Description
key-size (1024 | 2048 | 4096) Size of this key.
private-key (yes | no) Whether this is a private key.
rsa (yes | no) Whether this is a RSA key.


Commands

Property Description
export-pub-key (file-name; key) Export public key to file from one of existing private keys.
generate-key (key-size; name) Generate private key. Takes two parameters, name of newly generated key and key size 1024,2048 and 4096.
import (file-name; name) Import key from file.

Settings

Sub-menu: /ip ipsec settings


Property Description
accounting (yes | no; Default: ) Whether to send RADIUS accounting requests to RADIUS server. Applicable if EAP Radius (auth-method=eap-radius) or pre-shared key with XAuth authentication method (auth-method=pre-shared-key-xauth) is used.
interim-update (time; Default: ) Interval between each consecutive RADIUS accounting Interim update. Accounting must be enabled.
xauth-use-radius (yes | no; Default: ) Whether to use Radius client for XAuth users or not.

Application Guides

RoadWarrior client with NAT

Consider setup as illustrated below. RouterOS acts as a RoadWarrior client connected to Office allowing access to its internal resources.

Tunnel is established, local mode-config IP address is received and a set of dynamic policies are generated.

[admin@pair_r1] > ip ipsec policy print 
Flags: T - template, X - disabled, D - dynamic, I - invalid, A - active, * - default 
 0 T * group=default src-address=::/0 dst-address=::/0 protocol=all proposal=default template=yes 

 1  DA  src-address=192.168.77.254/32 src-port=any dst-address=10.5.8.0/24 dst-port=any protocol=all 
       action=encrypt level=unique ipsec-protocols=esp tunnel=yes sa-src-address=10.155.107.8 
       sa-dst-address=10.155.107.9 proposal=default ph2-count=1 

 2  DA  src-address=192.168.77.254/32 src-port=any dst-address=192.168.55.0/24 dst-port=any protocol=all 
       action=encrypt level=unique ipsec-protocols=esp tunnel=yes sa-src-address=10.155.107.8 
       sa-dst-address=10.155.107.9 proposal=default ph2-count=1 

Currently only packets with source address of 192.168.77.254/32 will match the IPsec policies. For local network to be able to reach remote subnets, it is necessary to change the source address of local hosts to the dynamically assigned mode config IP address. It is possible to generate source NAT rules dynamically. This can be done by creating a new address list which contains of all local networks that NAT rule should be applied. In our case, it is 192.168.88.0/24.

/ip firewall address-list add address=192.168.88.0/24 list=local-RW

By specifying the address list under mode-config initiator configuration, a set of source NAT rules will be dynamically generated.

/ip ipsec mode-config set [ find name="request-only" ] src-address-list=local-RW

When the IPsec tunnel is established, we can see the dynamically created source NAT rules for each network. Now every host in 192.168.88.0/24 is able to access Office's internal resources.

[admin@pair_r1] > ip firewall nat print 
Flags: X - disabled, I - invalid, D - dynamic 
 0  D ;;; ipsec mode-config
      chain=srcnat action=src-nat to-addresses=192.168.77.254 dst-address=192.168.55.0/24 src-address-list=local-RW

 1  D ;;; ipsec mode-config
      chain=srcnat action=src-nat to-addresses=192.168.77.254 dst-address=10.5.8.0/24 src-address-list=local-RW

Simple mutual PSK XAuth configuration

Server side configuration:

/ip ipsec peer
add address=2.2.2.1 auth-method=pre-shared-key-xauth secret="123" passive=yes

/ip ipsec user
add name=test password=345

Client side configuration:

/ip ipsec peer
add address=2.2.2.2 auth-method=pre-shared-key-xauth secret="123" \
  xauth-login=test xauth-password=345


Note: On server side it is mandatory to set passive to yes when XAuth is used.


Allow only IPsec encapsulated traffic

There are some scenarios where for security reasons you would like to drop access from/to specific networks if incoming/outgoing packets are not encrypted. For example, if we have L2TP/IPsec setup we would want to drop non encrypted L2TP connection attempts.

There are several ways how to achieve this:

  • Using IPsec policy matcher in firewall;
  • Using generic IPsec policy with action set to drop and lower priority (can be used in Road Warrior setups where dynamic policies are generated);
  • By setting DSCP or priority in mangle and matching the same values in firewall after decapsulation.

IPsec policy matcher

Lets set up IPsec policy matcher to accept all packets that matched any of IPsec policies and drop the rest:

add chain=input comment="ipsec policy matcher" in-interface=WAN \
    ipsec-policy=in,ipsec
add action=drop chain=input comment="drop all" in-interface=WAN log=yes

IPsec policy matcher takes two parameters direction,policy. We used incoming direction and IPsec policy. IPsec policy option allows us to inspect packets after decapsulation, so for example if we want to allow only gre encapsulated packet from specific source address and drop the rest we could set up following rules:

add chain=input comment="ipsec policy matcher" in-interface=WAN \
    ipsec-policy=in,ipsec protocol=gre src=address=192.168.33.1
add action=drop chain=input comment="drop all" in-interface=WAN log=yes

For L2TP rule set would be:

add chain=input comment="ipsec policy matcher" in-interface=WAN \
    ipsec-policy=in,ipsec protocol=udp dst-port=1701
add action=drop chain=input protocol=udp dst-port=1701 comment="drop l2tp" in-interface=WAN log=yes

Using generic IPsec policy

The trick of this method is to add default policy with action drop. Lets assume we are running L2TP/IPsec server on public 1.1.1.1 address and we want to drop all non encrypted L2TP:

/ip ipsec policy
add src-address=1.1.1.1 dst-address=0.0.0.0/0 sa-src-address=1.1.1.1 \
  protocol=udp src-port=1701 tunnel=yes action=discard

Now router will drop any L2TP unencrypted incoming traffic, but after successful L2TP/IPsec connection dynamic policy is created with higher priority than it is on default static rule and packets matching that dynamic rule can be forwarded.

Note: Policy order is important! For this to work, make sure the static drop policy is below the dynamic policies. Move it below the policy template if necessary.


[admin@rack2_10g1] /ip ipsec policy> print
Flags: T - template, X - disabled, D - dynamic, I - inactive, * - default
 0 T * group=default src-address=::/0 dst-address=::/0 protocol=all
       proposal=default template=yes

 1  D  src-address=1.1.1.1/32 src-port=1701 dst-address=10.5.130.71/32
       dst-port=any protocol=udp action=encrypt level=require
       ipsec-protocols=esp tunnel=no sa-src-address=1.1.1.1
       sa-dst-address=10.5.130.71

 2     src-address=1.1.1.1/32 src-port=1701 dst-address=0.0.0.0/0
       dst-port=any protocol=udp action=discard level=unique
       ipsec-protocols=esp tunnel=yes sa-src-address=1.1.1.1
       sa-dst-address=0.0.0.0 proposal=default manual-sa=none

Manually specifying local-address parameter under Peer configuration

Using different routing table

IPsec, as any other service in RouterOS, uses main routing table regardless what local-address parameter is used for Peer configuration. It is necessary to apply routing marks to both IKE and IPSec traffic.

Consider the following example. There are two default routes - one in main routing table and another in routing table "backup". It is necessary to use the backup link for IPsec site to site tunnel.

[admin@pair_r1] > /ip route print detail 
Flags: X - disabled, A - active, D - dynamic, C - connect, S - static, r - rip, b - bgp, o - ospf, m - mme, B - blackhole, U - unreachable, P - prohibit 
 0 A S  dst-address=0.0.0.0/0 gateway=10.155.107.1 gateway-status=10.155.107.1 reachable via  ether1 distance=1 scope=30 target-scope=10 routing-mark=backup 

 1 A S  dst-address=0.0.0.0/0 gateway=172.22.2.115 gateway-status=172.22.2.115 reachable via  ether2 distance=1 scope=30 target-scope=10 

 2 ADC  dst-address=10.155.107.0/25 pref-src=10.155.107.8 gateway=ether1 gateway-status=ether1 reachable distance=0 scope=10 

 3 ADC  dst-address=172.22.2.0/24 pref-src=172.22.2.114 gateway=ether2 gateway-status=ether2 reachable distance=0 scope=10 

 4 ADC  dst-address=192.168.1.0/24 pref-src=192.168.1.1 gateway=bridge-local gateway-status=ether2 reachable distance=0 scope=10 

[admin@pair_r1] > /ip firewall nat print  
Flags: X - disabled, I - invalid, D - dynamic 
 0    chain=srcnat action=masquerade out-interface=ether1 log=no log-prefix="" 

 1    chain=srcnat action=masquerade out-interface=ether2 log=no log-prefix="" 

IPsec peer and policy configurations are created using the backup link's source address, as well as NAT bypass rule for IPsec tunnel traffic.

/ip ipsec peer
add address=10.155.130.136/32 local-address=10.155.107.8 secret=test
/ip ipsec policy
add sa-src-address=10.155.107.8 src-address=192.168.1.0/24 dst-address=172.16.0.0/24 sa-dst-address=10.155.130.136 tunnel=yes
/ip firewall nat
add action=accept chain=srcnat src-address=192.168.1.0/24 dst-address=172.16.0.0/24 place-before=0

Currently, we see "phase1 negotiation failed due to time up" errors in the log. It is because IPsec tries to reach the remote peer using the main routing table with incorrect source address. It is necessary to mark UDP/500, UDP/4500 and ipsec-esp packets using Mangle.

/ip firewall mangle
add action=mark-connection chain=output connection-mark=no-mark dst-address=10.155.130.136 dst-port=500,4500 \
new-connection-mark=ipsec passthrough=yes protocol=udp
add action=mark-connection chain=output connection-mark=no-mark dst-address=10.155.130.136 new-connection-mark=ipsec \
passthrough=yes protocol=ipsec-esp
add action=mark-routing chain=output connection-mark=ipsec new-routing-mark=backup passthrough=no

Using same routing table with multiple IP addresses

Consider the following example. There are multiple IP addresses from the same subnet on the public interface. Masquerade rule is configured on out-interface. It is necessary to use one of the IP addresses explicitly.

[admin@pair_r1] > /ip address print 
Flags: X - disabled, I - invalid, D - dynamic 
 #   ADDRESS            NETWORK         INTERFACE
 0   192.168.1.1/24     192.168.1.0     bridge-local
 1   172.22.2.1/24      172.22.2.0      ether1
 2   172.22.2.2/24      172.22.2.0      ether1
 3   172.22.2.3/24      172.22.2.0      ether1

[admin@pair_r1] > /ip route print 
Flags: X - disabled, A - active, D - dynamic, C - connect, S - static, r - rip, b - bgp, o - ospf, m - mme, B - blackhole, U - unreachable, P - prohibit 
 #      DST-ADDRESS        PREF-SRC        GATEWAY            DISTANCE
 1 A S  0.0.0.0/0                          172.22.2.115              1
 3 ADC  172.22.2.0/24      172.22.2.1      ether1                    0
 4 ADC  192.168.1.0/24     192.168.1.1     bridge-local              0

[admin@pair_r1] /ip firewall nat> print 
Flags: X - disabled, I - invalid, D - dynamic 
 0    chain=srcnat action=masquerade out-interface=ether1 log=no log-prefix="" 

IPsec peer and policy configuration is created using one of the public IP addresses.

/ip ipsec peer
add address=10.155.130.136/32 local-address=172.22.2.3 secret=test
/ip ipsec policy
add sa-src-address=172.22.2.3 src-address=192.168.1.0/24 dst-address=172.16.0.0/24 sa-dst-address=10.155.130.136 tunnel=yes
/ip firewall nat
add action=accept chain=srcnat src-address=192.168.1.0/24 dst-address=172.16.0.0/24 place-before=0

Currently the phase 1 connection uses a different source address than we specified and "phase1 negotiation failed due to time up" errors are shown in the logs. This is because masquerade is changing the source address of the connection to match pref-src address of the connected route. Solution is to exclude connections from the public IP address from being masqueraded.

/ip firewall nat
add action=accept chain=srcnat protocol=udp src-port=500,4500 place-before=0

Application Examples

Site to Site IPsec tunnel

Consider setup as illustrated below. Two remote office routers are connected to internet and office workstations are behind NAT. Each office has its own local subnet, 10.1.202.0/24 for Office1 and 10.1.101.0/24 for Office2. Both remote offices needs secure tunnel to local networks behind routers.

Site 1 configuration

Start off by creating new Phase 1 profile and Phase 2 proposal entries using stronger or weaker encryption parameters that suits your needs. It is advised to create separate entries for each menu so that they are unique for each peer in case it is necessary to adjust any of the settings in the future. These parameters must match between the sites or else the connection will not establish.

/ip ipsec profile
add dh-group=modp2048 enc-algorithm=aes-128 name=ike1-site2
/ip ipsec proposal
add enc-algorithms=aes-128-cbc name=ike1-site2 pfs-group=modp2048

Continue by configuring a peer. Specify the address of the remote router. This address should be reachable through UDP/500 and UDP/4500 ports, so make sure appropriate actions are taken regarding the router's firewall. Specify the name for this peer as well as the newly created profile.

/ip ipsec peer
add address=192.168.80.1/32 name=ike1-site2 profile=ike1-site2

The next step is to create an identity. For a basic pre-shared key secured tunnel, there is nothing much to set except for a strong secret and the peer to which this identity applies.

/ip ipsec identity
add peer=ike1-site2 secret=thisisnotasecurepsk

Warning: If security matters, consider using IKEv2 and a different auth-method.


Lastly, create a policy which controls the networks/hosts between whom traffic should be encrypted.

/ip ipsec policy
add src-address=10.1.202.0/24 src-port=any dst-address=10.1.101.0/24 dst-port=any \
tunnel=yes action=encrypt proposal=ike1-site2 peer=ike1-site2

Site 2 configuration

Office 2 configuration is almost identical as Office 1 with proper IP address configuration. Start off by creating new Phase 1 profile and Phase 2 proposal entries.

/ip ipsec profile
add dh-group=modp2048 enc-algorithm=aes-128 name=ike1-site1
/ip ipsec proposal
add enc-algorithms=aes-128-cbc name=ike1-site1 pfs-group=modp2048

Next is the peer and identity.

/ip ipsec peer
add address=192.168.90.1/32 name=ike1-site1 profile=ike1-site1
/ip ipsec identity
add peer=ike1-site1 secret=thisisnotasecurepsk

When it is done, create a policy:

/ip ipsec policy
add src-address=10.1.101.0/24 src-port=any dst-address=10.1.202.0/24 dst-port=any \
tunnel=yes action=encrypt proposal=ike1-site1 peer=ike1-site1

At this point, the tunnel should be established and two IPsec Security Associations should be created on both routers:

/ip ipsec
active-peers print
installed-sa print

NAT and Fasttrack Bypass

At this point if you try to send traffic over the IPsec tunnel, it will not work, packets will be lost. This is because both routers have NAT rules (masquerade) that is changing source address before packet is encrypted. Router is unable to encrypt the packet, because source address do not match address specified in policy configuration. For more information see IPsec packet flow example.

To fix this we need to set up IP/Firewall/NAT bypass rule.

Office 1 router:

/ip firewall nat
add chain=srcnat action=accept  place-before=0 \
 src-address=10.1.202.0/24 dst-address=10.1.101.0/24

Office 2 router:

/ip firewall nat
add chain=srcnat action=accept  place-before=0 \
 src-address=10.1.101.0/24 dst-address=10.1.202.0/24

Note: If you previously tried to establish an IP connection before NAT bypass rule was added, you have to clear connection table from existing connection or restart both routers.


It is very important that bypass rule is placed at the top of all other NAT rules.

Another issue is if you have IP/Fasttrack enabled, packet bypasses IPsec policies. So we need to add accept rule before FastTrack.

/ip firewall filter
add chain=forward action=accept place-before=1
 src-address=10.1.101.0/24 dst-address=10.1.202.0/24 connection-state=established,related
add chain=forward action=accept place-before=1
 src-address=10.1.202.0/24 dst-address=10.1.101.0/24 connection-state=established,related

However, this can add significant load to router's CPU if there is a fair amount of tunnels and significant traffic on each tunnel.

Solution is to use IP/Firewall/Raw to bypass connection tracking, that way eliminating need of filter rules listed above and reducing load on CPU by approximately 30%.

/ip firewall raw
add action=notrack chain=prerouting src-address=10.1.101.0/24 dst-address=10.1.202.0/24
add action=notrack chain=prerouting src-address=10.1.202.0/24 dst-address=10.1.101.0/24

Road Warrior setup using IKEv2 with RSA authentication

This example explains how to establish a secure IPsec connection between a device connected to the Internet (road warrior client) and a device running RouterOS acting as a server.


RouterOS server configuration

Before configuring IPsec, it is required to set up certificates. It is possible to use a separate Certificate Authority for certificate management, however in this example, self signed certificates are generated in RouterOS System/Certificates menu. Some certificate requirements should be met to connect various devices to the server:

  • Common name should contain IP or DNS name of the server;
  • SAN (subject alternative name) should have IP or DNS of the server;
  • EKU (extended key usage) tls-server and tls-client are required.

Considering all requirements above, generate CA and server certificates:

/certificate
add common-name=ca name=ca
sign ca ca-crl-host=2.2.2.2
add common-name=2.2.2.2 subject-alt-name=IP:2.2.2.2 key-usage=tls-server name=server1
sign server1 ca=ca

Now that valid certificates are created on the router, add new Phase 1 profile and Phase 2 proposal entries with pfs-group=none.

/ip ipsec profile
add name=ike2
/ip ipsec proposal
add name=ike2 pfs-group=none

Mode config is used for address distribution from IP/Pools.

/ip pool
add name=ike2-pool ranges=192.168.77.2-192.168.77.254
/ip ipsec mode-config
add address-pool=ike2-pool address-prefix-length=32 name=ike2-conf

Since that the policy template must be adjusted to allow only specific network policies, it is advised to create a separate policy group and template.

/ip ipsec policy group
add name=ike2-policies
/ip ipsec policy
add dst-address=192.168.77.0/24 group=ike2-policies proposal=ike2 src-address=0.0.0.0/0 template=yes

Create a new IPsec peer entry which will listen to all incoming IKEv2 requests.

/ip ipsec peer
add exchange-mode=ike2 name=ike2 passive=yes profile=ike2
Identity configuration

Identity menu allows to match specific remote peers and assign different configuration for each one of them. First, create a default identity, that will accept all peers, but will verify the peer's identity with its certificate.

/ip ipsec identity
add auth-method=digital-signature certificate=server1 generate-policy=port-strict mode-config=ike2-conf peer=ike2 policy-template-group=ike2-policies

Note: If peer's ID (ID_i) is not matching with the certificate it sends, the identity lookup will fail. See remote-id in identities section.


For example, we want to assign different mode config for user "A", who uses certificate "rw-client1" to authenticate itself to the server. First of all, make sure a new mode config is created and ready to be applied for the specific user.

/ip ipsec mode-config
add address=192.168.66.2 address-prefix-length=32 name=usr_A split-include=192.168.55.0/24 system-dns=no

It is possible apply this configuration for user "A" by using match-by=certificate parameter and specifying his certificate with remote-certificate.

/ip ipsec identity
add auth-method=digital-signature certificate=server1 generate-policy=port-strict match-by=certificate mode-config=usr_A peer=ike2 policy-template-group=ike2-policies remote-certificate=rw-client1
Split tunnel configuration

Split tunneling is a method which allows road warrior clients to only access a specific secured network and at the same time send the rest of the traffic based on their internal routing table (as opposed to sending all traffic over the tunnel). To configure split tunneling, changes to mode config parameters are needed.

For example we will allow our road warrior clients to only access 10.5.8.0/24 network.

/ip ipsec mode-conf
set [find name="rw-conf"] split-include=10.5.8.0/24

It is also possible to send specific DNS server for the client to use. By default system-dns=yes is used, which sends DNS servers that are configured on the router itself in IP/DNS. We can force the client to use different DNS server by using the static-dns parameter.

/ip ipsec mode-conf
set [find name="rw-conf"] system-dns=no static-dns=10.5.8.1

While it is possible to adjust IPsec policy template to only allow road warrior clients to generate policies to network configured by split-include parameter, this can cause compatibility issues with different vendor implementations (see known limitations). Instead of adjusting the policy template, allow access to secured network in IP/Firewall/Filter and drop everything else.

/ip firewall filter
add action=drop chain=forward src-address=192.168.77.0/24 dst-address=!10.5.8.0/24

Warning: Split networking is not a security measure. The client (initiator) can still request a different Phase 2 traffic selector.


Generating client certificates

To generate a new certificate for the client and sign it with previously created CA.

/certificate
add common-name=rw-client1 name=rw-client1 key-usage=tls-client
sign rw-client1 ca=ca

PKCS12 format is accepted by most of client implementations, so when exporting the certificate, make sure PKCS12 is specified.

/certificate
export-certificate rw-client1 export-passphrase=1234567890 type=pkcs12

A file named cert_export_rw-client1.p12 is now located in the routers System/File section. This file should be securely transported to the client device.

Typically PKCS12 bundle contains also CA certificate, but some vendors may not install this CA, so self-signed CA certificate must be exported separately using PEM format.

/certificate
export-certificate ca type=pem

A file named cert_export_ca.crt is now located in the routers System/File section. This file should also be securely transported to the client device.

PEM is another certificate format for use in client software that do not support PKCS12. Principle is pretty much the same.

/certificate
export-certificate ca
export-certificate rw-client1 export-passphrase=1234567890

Three files are now located in the routers Files section: cert_export_ca.crt, cert_export_rw-client1.crt and cert_export_rw-client1.key which should be securely transported to the client device.

Known limitations

Here is a list of known limitations by popular client software IKEv2 implementations.

  • Windows will always ignore networks received by split-include and request policy with destination 0.0.0.0/0 (TSr). When IPsec-SA is generated, Windows requests DHCP option 249 to which RouterOS will respond with configured split-include networks automatically.
  • Both Apple macOS and iOS will only accept the first split-include network.
  • Both Apple macOS and iOS will use the DNS servers from system-dns and static-dns parameters only when 0.0.0.0/0 split-include is used.
  • While some implementations can make use of different PFS group for phase 2, it is advised to use pfs-group=none under proposals to avoid any compatibility issues.

RouterOS client configuration

Import a PKCS12 format certificate in RouterOS.

/certificate import file-name=cert_export_RouterOS_client.p12 passphrase=1234567890

There should now be the self-signed CA certificate and the client certificate in Certificate menu. Find out the name of the client certificate.

/certificate print

cert_export_RouterOS_client.p12_0 is the client certificate.

It is advised to create a separate Phase 1 profile and Phase 2 proposal configurations to not interfere with any existing IPsec configuration.

/ip ipsec profile
add name=ike2-rw
/ip ipsec proposal
add name=ike2-rw pfs-group=none

While it is possible to use the default policy template for policy generation, it is better to create a new policy group and template to separate this configuration from any other IPsec configuration.

/ip ipsec policy group
add name=ike2-rw
/ip ipsec policy
add group=ike2-rw proposal=ike2-rw template=yes

Create a new mode config entry with responder=no that will request configuration parameters from the server.

/ip ipsec mode-config
add name=ike2-rw responder=no

Lastly, create peer and identity configurations.

/ip ipsec peer
add address=2.2.2.2/32 exchange-mode=ike2 name=ike2-rw-client
/ip ipsec identity
add auth-method=digital-signature certificate=cert_export_RouterOS_client.p12_0 generate-policy=port-strict mode-config=ike2-rw peer=ike2-rw-client policy-template-group=ike2-rw

Verify that the connection is successfully established.

/ip ipsec
active-peers print
installed-sa print
Enabling dynamic source NAT rule generation

If we look at the generated dynamic policies, we see that only traffic with a specific (received by mode config) source address will be sent through the tunnel. But a router in most cases will need to route a specific device or network through the tunnel. In such case we can use source NAT to change the source address of packets to match the mode config address. Since the mode config address is dynamic, it is impossible to create static source NAT rule. In RouterOS it is possible to generate dynamic source NAT rules for mode config clients.

For example, we have a local network 192.168.88.0/24 behind the router and we want all traffic from this network to be sent over the tunnel. First of all, we have to make a new IP/Firewall/Address list which consists of our local network.

/ip firewall address-list
add address=192.168.88.0/24 list=local

When it is done, we can assign newly created IP/Firewall/Address list to mode config configuration.

/ip ipsec mode-config
set [ find name=ike2-rw ] src-address-list=local

Verify correct source NAT rule is dynamically generated when the tunnel is established.

[admin@MikroTik] > /ip firewall nat print 
Flags: X - disabled, I - invalid, D - dynamic 
 0  D ;;; ipsec mode-config
      chain=srcnat action=src-nat to-addresses=192.168.77.254 src-address-list=local dst-address-list=!local

Warning: Make sure dynamic mode config address is not a part of local network.


Windows client configuration

Open PKCS12 format certificate file on the Windows computer. Install the certificate by following the instructions. Make sure you select Local Machine store location.

You can now proceed to Network and Internet settings -> VPN and add a new configuration. Fill in the Connection name, Server name or address parameters. Select IKEv2 under VPN type. When it is done, it is necessary to select "Use machine certificates". This can be done in Network and Sharing Center by clicking the Properties menu for the VPN connection. The setting is located under Security tab.

Currently Windows 10 is compatible with the following Phase 1 ( profiles) and Phase 2 ( proposals) proposal sets:

Phase 1
Hash AlgorithmEncryption AlgorithmDH Group
SHA13DESmodp1024
SHA2563DESmodp1024
SHA1AES-128-CBCmodp1024
SHA256AES-128-CBCmodp1024
SHA1AES-192-CBCmodp1024
SHA256AES-192-CBCmodp1024
SHA1AES-256-CBCmodp1024
SHA256AES-256-CBCmodp1024
SHA1AES-128-GCMmodp1024
SHA256AES-128-GCMmodp1024
SHA1AES-256-GCMmodp1024
SHA256AES-256-GCMmodp1024


Phase 2
Hash AlgorithmEncryption AlgorithmPFS Group
SHA1AES-256-CBCnone
SHA1AES-128-CBCnone
SHA13DESnone
SHA1DESnone
SHA1nonenone


macOS client configuration

Open PKCS12 format certificate file on the macOS computer and install the certificate in "System" keychain. It is necessary to mark the CA certificate as trusted manually since it is self-signed. Locate the certificate macOS Keychain Access app under System tab and mark it as Always Trust.

You can now proceed to System Preferences -> Network and add a new configuration by clicking the + button. Select Interface: VPN, VPN Type: IKEv2 and name your connection. Remote ID must be set equal to common-name or subjAltName of server's certificate. Local ID can be left blank. Under Authentication Settings select None and choose the client certificate. You can now test the connectivity.

Currently macOS is compatible with the following Phase 1 ( profiles) and Phase 2 ( proposals) proposal sets:

Phase 1
Hash AlgorithmEncryption AlgorithmDH Group
SHA256AES-256-CBCmodp2048
SHA256AES-256-CBCecp256
SHA256AES-256-CBCmodp1536
SHA1AES-128-CBCmodp1024
SHA13DESmodp1024


Phase 2
Hash AlgorithmEncryption AlgorithmPFS Group
SHA256AES-256-CBCnone
SHA1AES-128-CBCnone
SHA13DESnone


iOS client configuration

Typically PKCS12 bundle contains also CA certificate, but iOS does not install this CA, so self-signed CA certificate must be installed separately using PEM format. Open these files on the iOS device and install both certificates by following the instructions. It is necessary to mark the self-signed CA certificate as trusted on the iOS device. This can be done in Settings -> General -> About -> Certificate Trust Settings menu. When it is done, check whether both certificates are marked as "verified" under Settings -> General -> Profiles menu.


You can now proceed to Settings -> General -> VPN menu and add a new configuration. Remote ID must be set equal to common-name or subjAltName of server's certificate. Local ID can be left blank.


Currently iOS is compatible with the following Phase 1 ( profiles) and Phase 2 ( proposals) proposal sets:

Phase 1
Hash AlgorithmEncryption AlgorithmDH Group
SHA256AES-256-CBCmodp2048
SHA256AES-256-CBCecp256
SHA256AES-256-CBCmodp1536
SHA1AES-128-CBCmodp1024
SHA13DESmodp1024


Phase 2
Hash AlgorithmEncryption AlgorithmPFS Group
SHA256AES-256-CBCnone
SHA1AES-128-CBCnone
SHA13DESnone


Note: If you are connected to the VPN over WiFi, the iOS device can go into sleep mode and disconnect from the network.



Android (strongSwan) client configuration

Currently there is no IKEv2 native support in Android, however it is possible to use strongSwan from Google Play Store which brings IKEv2 to Android. StrongSwan accepts PKCS12 format certificates, so before setting up the VPN connection in strongSwan, make sure you download the PKCS12 bundle to your Android device. When it is done, create a new VPN profile in strongSwan, type in the server IP and choose "IKEv2 Certificate" as VPN Type. When selecting a User certificate, press Install and follow the certificate extract procedure by specifying the PKCS12 bundle. Save the profile and test the connection by pressing on the VPN profile.


It is possible to specify custom encryption settings in strongSwan by ticking the "Show advanced settings" checkbox. Currently strongSwan by default is compatible with the following Phase 1 ( profiles) and Phase 2 ( proposals) proposal sets:

Phase 1
Hash AlgorithmEncryption AlgorithmDH Group
SHA*AES-*-CBCmodp2048
SHA*AES-*-CBCecp256
SHA*AES-*-CBCecp384
SHA*AES-*-CBCecp521
SHA*AES-*-CBCmodp3072
SHA*AES-*-CBCmodp4096
SHA*AES-*-CBCmodp6144
SHA*AES-*-CBCmodp8192
SHA*AES-*-GCMmodp2048
SHA*AES-*-GCMecp256
SHA*AES-*-GCMecp384
SHA*AES-*-GCMecp521
SHA*AES-*-GCMmodp3072
SHA*AES-*-GCMmodp4096
SHA*AES-*-GCMmodp6144
SHA*AES-*-GCMmodp8192


Phase 2
Hash AlgorithmEncryption AlgorithmPFS Group
noneAES-256-GCMnone
noneAES-128-GCMnone
SHA256AES-256-CBCnone
SHA512AES-256-CBCnone
SHA1AES-256-CBCnone
SHA256AES-192-CBCnone
SHA512AES-192-CBCnone
SHA1AES-192-CBCnone
SHA256AES-128-CBCnone
SHA512AES-128-CBCnone
SHA1AES-128-CBCnone

Linux (strongSwan) client configuration

Download the PKCS12 certificate bundle and move it to /etc/ipsec.d/private directory.

Add exported passphrase for the private key to /etc/ipsec.secrets file where "strongSwan_client.p12" is the file name and "1234567890" is the passphrase.

: P12 strongSwan_client.p12 "1234567890"

Add a new connection to /etc/ipsec.conf file

conn "ikev2"
        keyexchange=ikev2
        ike=aes128-sha1-modp2048
        esp=aes128-sha1
        leftsourceip=%modeconfig
        leftcert=strongSwan_client.p12
        leftfirewall=yes
        right=2.2.2.2
        rightid="CN=2.2.2.2"
        rightsubnet=0.0.0.0/0
        auto=add

You can now restart (or start) the ipsec daemon and initialize the connection

$ ipsec restart
$ ipsec up ikev2

Road Warrior setup with Mode Conf

Consider setup where worker need to access other co-workers (workstations) and local office server remotely. Office has two subnets:

  • 192.168.55.0/24 for workstations
  • 192.168.66.0/24 network that must not be reachable by RoadWarrior clients
  • 10.5.8.0/24 for servers

And access to those networks should be secure.

Typically in RoadWarrior setups as this it is impossible to know from which address user will connect, so we need to set up generate-policy parameter on the server side. However this leads to other problems, client can generate any policy and access any network in the office. Even set 0.0.0.0/0 and deny internet access to office workers.

Mode Conf, policy group and policy templates will allow us to overcome these problems.


IPsec Server Config

At first we need a pool from which RoadWarrior will will get an address. Typically in office you set up DHCP server for local workstations, the same DHCP pool can be used.

/ip pool
add name=ipsec-RW ranges=192.168.77.2-192.168.77.254

Next we need to set up what settings to send to the client using Mode Conf.

/ip ipsec mode-config
add address-pool=ipsec-RW name=RW-cfg split-include=\
    10.5.8.0/24,192.168.55.0/24

As you can see we specified from which pool to give out address and two allowed subnets.


Now to allow only specific source/destination address in generated policies we will use policy group and create policy templates:

/ip ipsec policy group
add name=RoadWarrior

/ip ipsec policy
add dst-address=192.168.77.0/24 group=RoadWarrior src-address=10.5.8.0/24 \
    template=yes
add dst-address=192.168.77.0/24 group=RoadWarrior src-address=192.168.55.0/24 \
    template=yes


Now we just add xauth users and peer with enabled Mode Conf and policy group.

/ip ipsec user
add name=user1 password=123
add name=user2 password=234

/ip ipsec peer
add auth-method=pre-shared-key-xauth generate-policy=port-strict mode-config=RW-cfg \
    policy-template-group=RoadWarrior secret=123 passive=yes

Apple iOS (iPhone/iPad) Client

For iOS devices to be able to connect, proposal changes are needed:

  • does not work with 3des encryption algorithm, aes-128/256 works
  • auth algorithm must be sha1
  • PFS group must be none
  • lifetime must be 8 hours

Example of valid proposal configuration for iOS devices:

/ip ipsec proposal
set default enc-algorithms=aes-128-cbc,aes-256-cbc lifetime=8h \
    pfs-group=none

Note: Iphone does not work with split-include 0.0.0.0/0. If you set 0.0.0.0/0 for older clients traffic will not be sent over the tunnel, for newer ios clients tunnel will not be established.


Android Client Notes

Android devices are trying to add policy with destination 0.0.0.0/0, so you have to make sure that correct policy template is added.

In our case we need to add:

/ip ipsec policy
add group=RoadWarrior dst-address=192.168.77.0/24 src-address=0.0.0.0/0 template=yes

RouterOS Client Config

/ip ipsec peer
add address=2.2.2.2 auth-method=pre-shared-key-xauth generate-policy=port-strict secret=123 \
     xauth-login=user1 xauth-password=123 mode-config=request-only

Shrew Client Config

n:version:2
n:network-ike-port:500
n:network-mtu-size:1380
n:network-natt-port:4500
n:network-natt-rate:15
n:network-frag-size:540
n:network-dpd-enable:0
n:client-banner-enable:0
n:network-notify-enable:0
n:client-wins-used:0
n:client-wins-auto:1
n:client-dns-used:1
n:client-dns-auto:0
n:client-splitdns-used:1
n:client-splitdns-auto:0
n:phase1-dhgroup:2
n:phase1-life-secs:86400
n:phase1-life-kbytes:0
n:vendor-chkpt-enable:0
n:phase2-life-secs:300
n:phase2-life-kbytes:0
n:policy-nailed:1
n:policy-list-auto:1
n:client-addr-auto:1
s:network-host:2.2.2.2
s:client-auto-mode:pull
s:client-iface:virtual
s:network-natt-mode:disable
s:network-frag-mode:disable
s:auth-method:mutual-psk-xauth
s:ident-client-type:address
s:ident-server-type:address
b:auth-mutual-psk:MTIz
s:phase1-exchange:main
s:phase1-cipher:3des
s:phase1-hash:md5
s:phase2-transform:esp-3des
s:phase2-hmac:sha1
s:ipcomp-transform:disabled
n:phase2-pfsgroup:2
s:policy-level:require

Basic L2TP/IPsec setup

This example demonstrates how to easily setup L2TP/IPsec server on RouterOS for road warrior connections (works with Windows, Android, iOS, macOS and other vendor L2TP/IPsec implementations).

RouterOS server configuration

First step is to enable L2TP server:

/interface l2tp-server server
set enabled=yes use-ipsec=required ipsec-secret=mySecret default-profile=default

use-ipsec is set to required to make sure that only IPsec encapsulated L2TP connections are accepted.

Now what it does is enables L2TP server and creates dynamic IPsec peer with specified secret.

[admin@MikroTik] /ip ipsec peer> print 
 0  D address=0.0.0.0/0 local-address=0.0.0.0 passive=yes port=500 
      auth-method=pre-shared-key secret="123" generate-policy=port-strict 
      exchange-mode=main-l2tp send-initial-contact=yes nat-traversal=yes 
      hash-algorithm=sha1 enc-algorithm=3des,aes-128,aes-192,aes-256 
      dh-group=modp1024 lifetime=1d dpd-interval=2m dpd-maximum-failures=5 

Note: Care must be taken if static IPsec peer configuration exists.


Next step is to create VPN pool and add some users.

/ip pool add name=vpn-pool range=192.168.99.2-192.168.99.100

/ppp profile
set default local-address=192.168.99.1 remote-address=vpn-pool

/ppp secret
add name=user1 password=123
add name=user2 password=234

Now router is ready to accept L2TP/IPsec client connections.

RouterOS client configuration

For RouterOS to work as L2TP/IPsec client, it is as simple as adding a new L2TP client.

/interface l2tp-client
add connect-to=1.1.1.1 disabled=no ipsec-secret=mySecret name=l2tp-out1 \
    password=123 use-ipsec=yes user=user1

It will automatically create dynamic IPsec peer and policy configuration.

Site to Site GRE tunnel over IPsec (IKEv2) using DNS

This example explains how it is possible to establish a secure and encrypted GRE tunnel between two RouterOS devices when one or both sites do not have a static IP address. Before making this configuration possible, it is necessary to have a DNS name assigned to one of the devices which will act as a responder (server). For simplicity, we will use RouterOS built in DDNS service IP/Cloud.

Site 1 (server) configuration

This is the side that will listen to incoming connections and act as a responder. We will use mode config to provide an IP address for the second site, but first create a loopback (blank) bridge and assign an IP address to it that will be used later for GRE tunnel establishment.

/interface bridge 
add name=loopback
/ip address
add address=192.168.99.1 interface=loopback

Continuing with the IPsec configuration, start off by creating new Phase 1 profile and Phase 2 proposal entries using stronger or weaker encryption parameters that suits your needs. Note that this configuration example will listen to all incoming IKEv2 requests, meaning the profile configuration will be shared between all other configurations (e.g. RoadWarrior).

/ip ipsec profile
add dh-group=ecp256,modp2048,modp1024 enc-algorithm=aes-256,aes-192,aes-128 name=ike2
/ip ipsec proposal
add auth-algorithms=null enc-algorithms=aes-128-gcm name=ike2-gre pfs-group=none

Next, create new mode config entry with responder=yes. This will provide an IP configuration for the other site as well as the host (loopback address) for policy generation.

/ip ipsec mode-config
add address=192.168.99.2 address-prefix-length=32 name=ike2-gre split-include=192.168.99.1/32 system-dns=no

It is advised to create a new policy group to separate this configuration from any existing or future IPsec configuration.

/ip ipsec policy group
add name=ike2-gre

Now it is time to set up a new policy template that will match the remote peers new dynamic address and the loopback address.

/ip ipsec policy
add dst-address=192.168.99.2/32 group=ike2-gre proposal=ike2-gre src-address=192.168.99.1/32 template=yes

The next step is to create peer configuration that will listen for all IKEv2 requests. If you already have such entry, you can skip this step.

/ip ipsec peer
add exchange-mode=ike2 name=ike2 passive=yes profile=ike2

Lastly, set up an identity that will match our remote peer by pre-shared-key authentication with specific secret.

/ip ipsec identity
add generate-policy=port-strict mode-config=ike2-gre peer=ike2 policy-template-group=ike2-gre secret=test

The server side is now configured and listening to all IKEv2 requests. Please make sure the firewall is not blocking UDP/4500 port.

The last step is to create the GRE interface itself. This can also be done later when IPsec connection is established from the client side.

/interface gre
add local-address=192.168.99.1 name=gre-tunnel1 remote-address=192.168.99.2

Site 2 (client) configuration

Similarly to server configuration, start off by creating new Phase 1 profile and Phase 2 proposal configurations. Since this side will be the initiator, we can use more specific profile configuration to control which exact encryption parameters are used, just make sure they overlap with what is configured on the server side.

/ip ipsec profile
add dh-group=ecp256 enc-algorithm=aes-256 name=ike2-gre
/ip ipsec proposal
add auth-algorithms=null enc-algorithms=aes-128-gcm name=ike2-gre pfs-group=none

Next, create new mode config entry with responder=no. This will make sure the peer requests IP and split-network configuration from the server.

/ip ipsec mode-config
add name=ike2-gre responder=no

It is also advised to create a new policy group to separate this configuration from any existing or future IPsec configuration.

/ip ipsec policy group
add name=ike2-gre

Create a new policy template on the client side as well.

/ip ipsec policy
add dst-address=192.168.99.1/32 group=ike2-gre proposal=ike2-gre src-address=192.168.99.2/32 template=yes

Move on to peer configuration. Now we can specify the DNS name for the server under address parameter. Obviously, you can use an IP address as well.

/ip ipsec peer
add address=n.mynetname.net exchange-mode=ike2 name=p1.ez profile=ike2-gre

Lastly, create an identity for our newly created peer.

/ip ipsec identity
add generate-policy=port-strict mode-config=ike2-gre peer=p1.ez policy-template-group=ike2-gre secret=test

If everything was done properly, there should be a new dynamic policy present.

/ip ipsec policy print 
Flags: T - template, X - disabled, D - dynamic, I - invalid, A - active, * - default 
 0 T * group=default src-address=::/0 dst-address=::/0 protocol=all proposal=default template=yes

 1 T   group=ike2-gre src-address=192.168.99.2/32 dst-address=192.168.99.1/32 protocol=all proposal=ike2-gre template=yes

 2  DA  src-address=192.168.99.2/32 src-port=any dst-address=192.168.99.1/32 dst-port=any protocol=all action=encrypt level=unique ipsec-protocols=esp 
       tunnel=yes sa-src-address=172.17.2.1 sa-dst-address=172.17.2.2 proposal=ike2-gre ph2-count=1 

A secure tunnel is now established between both sites which will encrypt all traffic between 192.168.99.2 <=> 192.168.99.1 addresses. We can use these addresses to create a GRE tunnel.

/interface gre
add local-address=192.168.99.2 name=gre-tunnel1 remote-address=192.168.99.1

IKEv2 EAP between NordVPN and RouterOS

Example available here

Troubleshooting/FAQ

Phase 1 Failed to get valid proposal
[admin@MikroTik] /log> print
(..)
17:12:32 ipsec,error no suitable proposal found. 
17:12:32 ipsec,error 10.5.107.112 failed to get valid proposal. 
17:12:32 ipsec,error 10.5.107.112 failed to pre-process ph1 packet (side: 1, status 1). 
17:12:32 ipsec,error 10.5.107.112 phase1 negotiation failed. 
(..)
Peers are unable to negotiate encryption parameters causing the connection to drop. To solve this issue, enable IPSec debug logs and find out which parameters are proposed by the remote peer and adjust configuration accordingly.
[admin@MikroTik] /system logging> add topics=ipsec,!debug
[admin@MikroTik] /log> print
(..)
17:21:08 ipsec rejected hashtype: DB(prop#1:trns#1):Peer(prop#1:trns#1) = MD5:SHA 
17:21:08 ipsec rejected enctype: DB(prop#1:trns#2):Peer(prop#1:trns#1) = 3DES-CBC:AES-CBC 
17:21:08 ipsec rejected hashtype: DB(prop#1:trns#2):Peer(prop#1:trns#1) = MD5:SHA 
17:21:08 ipsec rejected enctype: DB(prop#1:trns#1):Peer(prop#1:trns#2) = AES-CBC:3DES-CBC 
17:21:08 ipsec rejected hashtype: DB(prop#1:trns#1):Peer(prop#1:trns#2) = MD5:SHA 
17:21:08 ipsec rejected hashtype: DB(prop#1:trns#2):Peer(prop#1:trns#2) = MD5:SHA 
17:21:08 ipsec,error no suitable proposal found. 
17:21:08 ipsec,error 10.5.107.112 failed to get valid proposal. 
17:21:08 ipsec,error 10.5.107.112 failed to pre-process ph1 packet (side: 1, status 1). 
17:21:08 ipsec,error 10.5.107.112 phase1 negotiation failed. 
(..)
In this example, remote end requires SHA1 to be used as hash algorithm, but MD5 is configured on local router. Setting before the column symbol (:) is configured on the local side, parameter after the column symbol (:) is configured on the remote side.
"phase1 negotiation failed due to time up" what does it mean?
There are communication problems between the peers. Possible causes include - misconfigured Phase 1 IP addresses; firewall blocking UDP ports 500 and 4500; NAT between peers not properly translating IPsec negotiation packets.
This error message can also appear when local-address parameter is not used properly. More information available here.
Random packet drops or connections over the tunnel is very slow, enabling packet sniffer/torch fixes the problem
Problem is that before encapsulation packets are sent to Fasttrack/FastPath, thus bypassing IPsec policy checking.
Solution is to exclude traffic that need to be encapsulated/decaplsulated from Fasttrack, see configuration example here.
How to enable ike2?
For basic configuration enabling ike2 is very simple, just change exchange-mode in peer settings to ike2.
fatal NO-PROPOSAL-CHOSEN notify messsage
Remote peer sent notify that it cannot accept proposed algorithms, to find exact cause of the problem, look at remote peers debug logs or configuration and verify that both client and server have the same set of algorithms.
I can ping only in one direction.
Typical problem in such cases is strict firewall, firewall rules allow to create new connections only in one direction. Solution is to recheck firewall rules, or explicitly accept all traffic that should be encapsulated/decapsulated.
Can I allow only encrypted traffic?
Yes, you can, see examples here.
I enable IKEv2 REAUTH on StrongSwan and got error 'initiator did not reauthenticate as requested'
RouterOS does not support rfc4478, reauth must be disabled on StrongSwan.

[ Top | Back to Content ]