API in C using winsock

From MikroTik Wiki
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

This is an implementation of RouterOS API written on C that using winsock2 for compatibility with Windows operation systems. It's based on API in C (You should use all sources from here, except mikrotik-api.c, that incompatible with Windows). Use compatible mikrotik-api.c source from below.

If your compiler does not support "#pragma comment", add ws2_32.lib to your linker manually.


RouterOS API Source file (mikrotik-api.c)


/********************************************************************
 * Some definitions
 * Word = piece of API code
 * Sentence = multiple words
 * Block = multiple sentences (usually in response to a sentence request)
 * 

	int fdSock;
	int iLoginResult;
	struct Sentence stSentence;
	struct Block stBlock;

	fdSock = apiConnect("10.0.0.1", 8728);

	// attempt login
	iLoginResult = login(fdSock, "admin", "adminPassword");

	if (!iLoginResult)
	{
		apiDisconnect(fdSock);
		printf("Invalid username or password.\n");
		exit(1);
	}

	// initialize, fill and send sentence to the API
	initializeSentence(&stSentence);
	addWordToSentence(&stSentence, "/interface/getall");
	writeSentence(fdSock, &stSentence);

	// receive and print block from the API
	stBlock = readBlock(fdSock);
	printBlock(&stBlock);
	
	apiDisconnect(fdSock);
	
 ********************************************************************/

// C implementation of Mikrotik's API rewritten for Winsock2 (for windows)
// Updated 28 August 2011 by hel

#include <stdio.h>
#include <winsock2.h>
#pragma comment(lib, "ws2_32.lib")
#include <windows.h>
#include <string.h>
#include <stdlib.h>
#include "md5.h"
#include "mikrotik-api.h"


/********************************************************************
 * Connect to API
 * Returns a socket descriptor
 ********************************************************************/
int apiConnect(char *szIPaddr, int iPort)
{

	int fdSock;
	struct sockaddr_in address;
	int iConnectResult;
	int iLen;
	
	WORD versionWanted = MAKEWORD(1,1);
	WSADATA wsaData;
	WSAStartup(versionWanted, &wsaData);

	fdSock = socket(AF_INET, SOCK_STREAM, 0);

	address.sin_family = AF_INET;
	address.sin_addr.s_addr = inet_addr(szIPaddr);
	address.sin_port = htons(iPort);
	iLen = sizeof(address);

	DEBUG ? printf("Connecting to %s\n", szIPaddr) : 0;

	iConnectResult = connect(fdSock, (struct sockaddr *)&address, iLen);

	if(iConnectResult==-1)
	{
		perror ("Connection problem");
		exit(1);
	}
	else
	{
		DEBUG ? printf("Successfully connected to %s\n", szIPaddr) : 0;
	}

	// determine endianness of this machine
	// iLittleEndian will be set to 1 if we are
	// on a little endian machine...otherwise
	// we are assumed to be on a big endian processor
	iLittleEndian = isLittleEndian();
	
	return fdSock;
}



/********************************************************************
 * Disconnect from API
 * Close the API socket
 ********************************************************************/
void apiDisconnect(int fdSock)
{
	DEBUG ? printf("Closing socket\n") : 0;
	
	closesocket(fdSock);
}



/********************************************************************
 * Login to the API
 * 1 is returned on successful login
 * 0 is returned on unsuccessful login
 ********************************************************************/
int login(int fdSock, char *username, char *password)
{
	struct Sentence stReadSentence;
	struct Sentence stWriteSentence;
	char *szMD5Challenge;
	char *szMD5ChallengeBinary;
	char *szMD5PasswordToSend;
	char *szLoginUsernameResponseToSend;
	char *szLoginPasswordResponseToSend;
	md5_state_t state;
	md5_byte_t digest[16];
	char cNull[1] = {0};


	writeWord(fdSock, "/login");
	writeWord(fdSock, "");

	stReadSentence = readSentence(fdSock);
	DEBUG ? printSentence (&stReadSentence) : 0;
	
	if (stReadSentence.iReturnValue != DONE)
	{
		printf("error.\n");
		exit(0);
	}
		
	// extract md5 string from the challenge sentence
	szMD5Challenge = strtok(stReadSentence.szSentence[1], "=");
	szMD5Challenge = strtok(NULL, "=");

	DEBUG ? printf("MD5 of challenge = %s\n", szMD5Challenge) : 0;
	
	// convert szMD5Challenge to binary
	szMD5ChallengeBinary = md5ToBinary(szMD5Challenge);

	// get md5 of the password + challenge concatenation
	md5_init(&state);
	md5_append(&state, cNull, 1);
	md5_append(&state, (const md5_byte_t *)password, strlen(password));
	md5_append(&state, (const md5_byte_t *)szMD5ChallengeBinary, 16);
	md5_finish(&state, digest);

	// convert this digest to a string representation of the hex values
	// digest is the binary format of what we want to send
	// szMD5PasswordToSend is the "string" hex format
	szMD5PasswordToSend = md5DigestToHexString(digest);
	
	DEBUG ? printf("szPasswordToSend = %s\n", szMD5PasswordToSend) : 0;
	
	// put together the login sentence
	initializeSentence(&stWriteSentence);

	addWordToSentence(&stWriteSentence, "/login");
	addWordToSentence(&stWriteSentence, "=name=");
	addPartWordToSentence(&stWriteSentence, username);
	addWordToSentence(&stWriteSentence, "=response=00");
	addPartWordToSentence(&stWriteSentence, szMD5PasswordToSend);

	DEBUG ? printSentence(&stWriteSentence) : 0;
	writeSentence(fdSock, &stWriteSentence);


	stReadSentence = readSentence(fdSock);
	DEBUG ? printSentence (&stReadSentence) : 0;

	if (stReadSentence.iReturnValue == DONE)
	{
		return 1;
	}
	else
	{
		return 0;
	}
}



/********************************************************************
 * Encode message length and write it out to the socket
 ********************************************************************/
void writeLen(int fdSock, int iLen)
{
	char *cEncodedLength;  // encoded length to send to the api socket
	char *cLength;         // exactly what is in memory at &iLen integer

	cLength = calloc(sizeof(int), 1);
	cEncodedLength = calloc(sizeof(int), 1);

	// set cLength address to be same as iLen
	cLength = (char *)&iLen;
	
	DEBUG ? printf("length of word is %d\n", iLen) : 0;

	// write 1 byte
	if (iLen < 0x80)
	{
		cEncodedLength[0] = (char)iLen;
		send (fdSock, cEncodedLength, 1, 0);
	}
	
	// write 2 bytes
	else if (iLen < 0x4000)
	{
		DEBUG ? printf("iLen < 0x4000.\n") : 0;

		if (iLittleEndian)
		{
			cEncodedLength[0] = cLength[1] | 0x80;
			cEncodedLength[1] = cLength[0];
		}
		else
		{
			cEncodedLength[0] = cLength[2] | 0x80;
			cEncodedLength[1] = cLength[3];
		}

		send (fdSock, cEncodedLength, 2, 0);
	}
	
	// write 3 bytes
 	else if (iLen < 0x200000)
	{
		DEBUG ? printf("iLen < 0x200000.\n") : 0;

		if (iLittleEndian)
		{
			cEncodedLength[0] = cLength[2] | 0xc0;
			cEncodedLength[1] = cLength[1];
			cEncodedLength[2] = cLength[0];
		}
		else
		{
			cEncodedLength[0] = cLength[1] | 0xc0;
			cEncodedLength[1] = cLength[2];
			cEncodedLength[2] = cLength[3];
		}

		send (fdSock, cEncodedLength, 3, 0);
	}
	
	// write 4 bytes
	// this code SHOULD work, but is untested...
	else if (iLen < 0x10000000)
	{
		DEBUG ? printf("iLen < 0x10000000.\n") : 0;

		if (iLittleEndian)
		{
			cEncodedLength[0] = cLength[3] | 0xe0;
			cEncodedLength[1] = cLength[2];
			cEncodedLength[2] = cLength[1];
			cEncodedLength[3] = cLength[0];
		}
		else
		{
			cEncodedLength[0] = cLength[0] | 0xe0;
			cEncodedLength[1] = cLength[1];
			cEncodedLength[2] = cLength[2];
			cEncodedLength[3] = cLength[3];
		}

		send (fdSock, cEncodedLength, 4, 0);
	}
	else  // this should never happen
	{
		printf("length of word is %d\n", iLen);
		printf("word is too long.\n");
		exit(1);
	}
}



/********************************************************************
 * Write a word to the socket
 ********************************************************************/
void writeWord(int fdSock, char *szWord)
{
	DEBUG ? printf("Word to write is %s\n", szWord) : 0;
	writeLen(fdSock, strlen(szWord));
	send(fdSock, szWord, strlen(szWord), 0);
}



/********************************************************************
 * Write a sentence (multiple words) to the socket
 ********************************************************************/
void writeSentence(int fdSock, struct Sentence *stWriteSentence)
{
	int iIndex;
	
	if (stWriteSentence->iLength == 0)
	{
		return;
	}
	
	DEBUG ? printf("Writing sentence\n"): 0;
	DEBUG ? printSentence(stWriteSentence) : 0;
	
	for (iIndex=0; iIndex<stWriteSentence->iLength; iIndex++)
	{
		writeWord(fdSock, stWriteSentence->szSentence[iIndex]);
	}
	
	writeWord(fdSock, "");
}



/********************************************************************
 * Read a message length from the socket
 * 
 * 80 = 10000000 (2 character encoded length)
 * C0 = 11000000 (3 character encoded length)
 * E0 = 11100000 (4 character encoded length)
 *
 * Message length is returned
 ********************************************************************/
int readLen(int fdSock)
{
	char cFirstChar; // first character read from socket
	char *cLength;   // length of next message to read...will be cast to int at the end
	int *iLen;       // calculated length of next message (Cast to int)

	cLength = calloc(sizeof(int), 1);

	DEBUG ? printf("start readLen()\n") : 0;

	recv(fdSock, &cFirstChar, 1, 0);

	DEBUG ? printf("byte1 = %#x\n", cFirstChar) : 0;

	// read 4 bytes
	// this code SHOULD work, but is untested...
	if ((cFirstChar & 0xE0) == 0xE0)
	{
		DEBUG ? printf("4-byte encoded length\n") : 0;

		if (iLittleEndian)
		{
			cLength[3] = cFirstChar;
			cLength[3] &= 0x1f;        // mask out the 1st 3 bits
			recv(fdSock, &cLength[2], 1, 0);
			recv(fdSock, &cLength[1], 1, 0);
			recv(fdSock, &cLength[0], 1, 0);
		}
		else
		{
			cLength[0] = cFirstChar;
			cLength[0] &= 0x1f;        // mask out the 1st 3 bits
			recv(fdSock, &cLength[1], 1, 0);
			recv(fdSock, &cLength[2], 1, 0);
			recv(fdSock, &cLength[3], 1, 0);
		}
		
		iLen = (int *)cLength;
	}

	// read 3 bytes
	else if ((cFirstChar & 0xC0) == 0xC0)
	{
		DEBUG ? printf("3-byte encoded length\n") : 0;

		if (iLittleEndian)
		{
			cLength[2] = cFirstChar;
			cLength[2] &= 0x3f;        // mask out the 1st 2 bits
			recv(fdSock, &cLength[1], 1, 0);
			recv(fdSock, &cLength[0], 1, 0);
		}
		else
		{
			cLength[1] = cFirstChar;
			cLength[1] &= 0x3f;        // mask out the 1st 2 bits
			recv(fdSock, &cLength[2], 1, 0);
			recv(fdSock, &cLength[3], 1, 0);
		}
		
		iLen = (int *)cLength;
	}

	// read 2 bytes
	else if ((cFirstChar & 0x80) == 0x80)
	{
		DEBUG ? printf("2-byte encoded length\n") : 0;

		if (iLittleEndian)
		{
			cLength[1] = cFirstChar;
			cLength[1] &= 0x7f;        // mask out the 1st bit
			recv(fdSock, &cLength[0], 1, 0);
		}
		else
		{
			cLength[2] = cFirstChar;
			cLength[2] &= 0x7f;        // mask out the 1st bit
			recv(fdSock, &cLength[3], 1, 0);
		}

		iLen = (int *)cLength;
	}
	
	// assume 1-byte encoded length...same on both LE and BE systems
	else
	{
		DEBUG ? printf("1-byte encoded length\n") : 0;
		iLen = malloc(sizeof(int));
		*iLen = (int)cFirstChar;
	}

	return *iLen;
}





/********************************************************************
 * Read a word from the socket
 * The word that was read is returned as a string
 ********************************************************************/
char *readWord(int fdSock)
{
	int iLen = readLen(fdSock);
	int iBytesToRead = 0;
	int iBytesRead = 0;
	char *szWord;
	char *szRetWord;
	char *szTmpWord;

	DEBUG ? printf("readWord iLen=%x\n", iLen) : 0;

	if (iLen > 0)
	{
		// allocate memory for strings
		szRetWord = calloc(sizeof(char), iLen + 1);
		szTmpWord = calloc(sizeof(char), 1024 + 1);
		
		while (iLen != 0)
		{
			// determine number of bytes to read this time around
			// lesser of 1024 or the number of byes left to read
			// in this word
			iBytesToRead = iLen > 1024 ? 1024 : iLen;
			
			// read iBytesToRead from the socket
			iBytesRead = recv(fdSock, szTmpWord, iBytesToRead, 0);

			// terminate szTmpWord
			szTmpWord[iBytesRead] = 0;

			// concatenate szTmpWord to szRetWord
			strcat(szRetWord, szTmpWord);
		
			// subtract the number of bytes we just read from iLen
			iLen -= iBytesRead;
		}		

		// deallocate szTmpWord
		free(szTmpWord);
		
		DEBUG ? printf("word = %s\n", szRetWord) : 0;
		return szRetWord;
	}
	else
	{
		return NULL;
	}
}



/********************************************************************
 * Read a sentence from the socket
 * A Sentence struct is returned
 ********************************************************************/
struct Sentence readSentence(int fdSock)
{
	struct Sentence stReturnSentence;
	char *szWord;
	int i=0;
	int iReturnLength=0;
	
	DEBUG ? printf("readSentence\n") : 0;

	initializeSentence(&stReturnSentence);
	
	while (szWord = readWord(fdSock))
	{
		addWordToSentence(&stReturnSentence, szWord);

		// check to see if we can get a return value from the API
		if (strstr(szWord, "!done") != NULL)
		{
			DEBUG ? printf("return sentence contains !done\n") : 0;
			stReturnSentence.iReturnValue = DONE;
		}
		else if (strstr(szWord, "!trap") != NULL)
		{
			DEBUG ? printf("return sentence contains !trap\n") : 0;
			stReturnSentence.iReturnValue = TRAP;
		}
		else if (strstr(szWord, "!fatal") != NULL)
		{
			DEBUG ? printf("return sentence contains !fatal\n") : 0;
			stReturnSentence.iReturnValue = FATAL;
		}
		
	}

	// if any errors, get the next sentence
	if (stReturnSentence.iReturnValue == TRAP || stReturnSentence.iReturnValue == FATAL)
	{
		readSentence(fdSock);
	}

	if (DEBUG)
	{
		for (i=0; i<stReturnSentence.iLength; i++)
		{
			printf("stReturnSentence.szSentence[%d] = %s\n", i, stReturnSentence.szSentence[i]);
		}
	}
	
	return stReturnSentence;
}



/********************************************************************
 * Read sentence block from the socket...keeps reading sentences
 * until it encounters !done, !trap or !fatal from the socket
 ********************************************************************/
struct Block readBlock(int fdSock)
{
	struct Sentence stSentence;
    struct Block stBlock;
	initializeBlock(&stBlock);

	DEBUG ? printf("readBlock\n") : 0;

	do
	{
		stSentence = readSentence(fdSock);
		DEBUG ? printf("readSentence succeeded.\n") : 0;
		
		addSentenceToBlock(&stBlock, &stSentence);
		DEBUG ? printf("addSentenceToBlock succeeded\n") : 0;
		
	} while (stSentence.iReturnValue == 0);


	DEBUG ? printf("readBlock completed successfully\n") : 0;
	
	return stBlock;
}



/********************************************************************
 * Initialize a new block
 * Set iLength to 0.
 ********************************************************************/
void initializeBlock(struct Block *stBlock)
{
	DEBUG ? printf("initializeBlock\n") : 0;

	stBlock->iLength = 0;
}


/********************************************************************
 * Clear an existing block
 * Free all sentences in the Block struct and set iLength to 0.
 ********************************************************************/
void clearBlock(struct Block *stBlock)
{
	DEBUG ? printf("clearBlock\n") : 0;

	free(stBlock->stSentence);
	initializeBlock(&stBlock);
}



/********************************************************************
 * Print a block.
 * Output a Block with printf.
 ********************************************************************/
void printBlock(struct Block *stBlock)
{
	int i;

	DEBUG ? printf("printBlock\n") : 0;
	DEBUG ? printf("block iLength = %d\n", stBlock->iLength) : 0;

	for (i=0; i<stBlock->iLength; i++)
	{
		printSentence(stBlock->stSentence[i]);
	}
}



/********************************************************************
 * Add a sentence to a block
 * Allocate memory and add a sentence to a Block.
 ********************************************************************/
void addSentenceToBlock(struct Block *stBlock, struct Sentence *stSentence)
{
	int iNewLength;
	iNewLength = stBlock->iLength + 1;

	DEBUG ? printf("addSentenceToBlock iNewLength=%d\n", iNewLength) : 0;

	// allocate mem for the new Sentence position
	if (stBlock->iLength == 0)
	{
		stBlock->stSentence = malloc(1 * sizeof stBlock->stSentence);
	}
	else
	{
		stBlock->stSentence = realloc(stBlock->stSentence, iNewLength * sizeof stBlock->stSentence + 1);
	}
	

	// allocate mem for the full sentence struct
	stBlock->stSentence[stBlock->iLength] = malloc(sizeof *stSentence);

	// copy actual sentence struct to the block position
	memcpy(stBlock->stSentence[stBlock->iLength], stSentence, sizeof *stSentence);

	// update iLength
	stBlock->iLength = iNewLength;

	DEBUG ? printf("addSentenceToBlock stBlock->iLength=%d\n", stBlock->iLength) : 0;
}



/********************************************************************
 * Initialize a new sentence
 ********************************************************************/
void initializeSentence(struct Sentence *stSentence)
{
	DEBUG ? printf("initializeSentence\n") : 0;

	stSentence->iLength = 0;
	stSentence->iReturnValue = 0;
}



/********************************************************************
 * Clear an existing sentence
 ********************************************************************/
void clearSentence(struct Sentence *stSentence)
{
	DEBUG ? printf("initializeSentence\n") : 0;

	free(stSentence->szSentence);
	initializeSentence(stSentence);
}



/********************************************************************
 * Add a word to a sentence struct
 ********************************************************************/
void addWordToSentence(struct Sentence *stSentence, char *szWordToAdd)
{
	int iNewLength;
	iNewLength = stSentence->iLength + 1;

	// allocate mem for the new word position
	if (stSentence->iLength == 0)
	{
		stSentence->szSentence = malloc(1 * sizeof stSentence->szSentence);
	}
	else
	{
		stSentence->szSentence = realloc(stSentence->szSentence, iNewLength * sizeof stSentence->szSentence + 1);
	}
	

	// allocate mem for the full word string
	stSentence->szSentence[stSentence->iLength] = malloc(strlen(szWordToAdd) + 1);

	// copy word string to the sentence
	strcpy(stSentence->szSentence[stSentence->iLength], szWordToAdd);

	// update iLength
	stSentence->iLength = iNewLength;
}




/********************************************************************
 * Add a partial word to a sentence struct...useful for concatenation
 ********************************************************************/
void addPartWordToSentence(struct Sentence *stSentence, char *szWordToAdd)
{
	int iIndex;
	iIndex = stSentence->iLength - 1;

	// reallocate memory for the new partial word
	stSentence->szSentence[iIndex] = realloc(stSentence->szSentence[iIndex], strlen(stSentence->szSentence[iIndex]) + strlen(szWordToAdd) + 1);

	// concatenate the partial word to the existing sentence
	strcat (stSentence->szSentence[iIndex], szWordToAdd);
}



/********************************************************************
 * Print a Sentence struct
 ********************************************************************/
void printSentence(struct Sentence *stSentence)
{
	int i;

	DEBUG ? printf("Sentence iLength = %d\n", stSentence->iLength) : 0;
	DEBUG ? printf("Sentence iReturnValue = %d\n", stSentence->iReturnValue) : 0;

	printf("Sentence iLength = %d\n", stSentence->iLength);
	printf("Sentence iReturnValue = %d\n", stSentence->iReturnValue);

	for (i=0; i<stSentence->iLength; i++)
	{
		printf(">>> %s\n", stSentence->szSentence[i]);
	}

	printf("\n");
}



/********************************************************************
 * MD5 helper function to convert an md5 hex char representation to
 * binary representation.
 ********************************************************************/
char *md5ToBinary(char *szHex)
{
	int di;
	char cBinWork[3];
	char *szReturn;

	// allocate 16 + 1 bytes for our return string
	szReturn = malloc((16 + 1) * sizeof *szReturn);

	// 32 bytes in szHex?
	if (strlen(szHex) != 32)
	{
		return NULL;
	}
	
	for (di=0; di<32; di+=2)
	{
		cBinWork[0] = szHex[di];
		cBinWork[1] = szHex[di + 1];
		cBinWork[2] = 0;

		DEBUG ? printf("cBinWork = %s\n", cBinWork) : 0;

		szReturn[di/2] = hexStringToChar(cBinWork);
	}
	
	return szReturn;
}



/********************************************************************
 * MD5 helper function to calculate and return hex representation
 * of an MD5 digest stored in binary.
 ********************************************************************/
char *md5DigestToHexString(md5_byte_t *binaryDigest)
{
	int di;
	char *szReturn;

	// allocate 32 + 1 bytes for our return string
	szReturn = malloc((32 + 1) * sizeof *szReturn);

	
	for (di = 0; di < 16; ++di)
	{
		sprintf(szReturn + di * 2, "%02x", binaryDigest[di]);
	}

	return szReturn;
}



/********************************************************************
 * Quick and dirty function to convert hex string to char...
 * the toConvert string MUST BE 2 characters + null terminated.
 ********************************************************************/
char hexStringToChar(char *cToConvert)
{
	char cConverted;
	unsigned int iAccumulated=0;
	char cString0[2] = {cToConvert[0], 0};
	char cString1[2] = {cToConvert[1], 0};
	
	// look @ first char in the 16^1 place
	if (cToConvert[0] == 'f' || cToConvert[0] == 'F')
	{
		iAccumulated += 16*15;
	}
	else if (cToConvert[0] == 'e' || cToConvert[0] == 'E')
	{
		iAccumulated += 16*14;
	}
	else if (cToConvert[0] == 'd' || cToConvert[0] == 'D')
	{
		iAccumulated += 16*13;
	}
	else if (cToConvert[0] == 'c' || cToConvert[0] == 'C')
	{
		iAccumulated += 16*12;
	}
	else if (cToConvert[0] == 'b' || cToConvert[0] == 'B')
	{
		iAccumulated += 16*11;
	}
	else if (cToConvert[0] == 'a' || cToConvert[0] == 'A')
	{
		iAccumulated += 16*10;
	}
	else
	{
		iAccumulated += 16 * atoi(cString0);
	}
	
	
	// now look @ the second car in the 16^0 place
	if (cToConvert[1] == 'f' || cToConvert[1] == 'F')
	{
		iAccumulated += 15;
	}
	else if (cToConvert[1] == 'e' || cToConvert[1] == 'E')
	{
		iAccumulated += 14;
	}
	else if (cToConvert[1] == 'd' || cToConvert[1] == 'D')
	{
		iAccumulated += 13;
	}
	else if (cToConvert[1] == 'c' || cToConvert[1] == 'C')
	{
		iAccumulated += 12;
	}
	else if (cToConvert[1] == 'b' || cToConvert[1] == 'B')
	{
		iAccumulated += 11;
	}
	else if (cToConvert[1] == 'a' || cToConvert[1] == 'A')
	{
		iAccumulated += 10;
	}
	else
	{
		iAccumulated += atoi(cString1);
	}

	DEBUG ? printf("%d\n", iAccumulated) : 0;
	return (char)iAccumulated;	
}




/********************************************************************
 * Test whether or not this system is little endian at RUNTIME
 * Courtesy: http://download.osgeo.org/grass/grass6_progman/endian_8c_source.html
 ********************************************************************/
int isLittleEndian(void)
{
	union
	{
		int testWord;
		char testByte[sizeof(int)];
	} endianTest;

	endianTest.testWord = 1;

	if (endianTest.testByte[0] == 1)
	return 1;               /* true: little endian */

	return 0;                   /* false: big endian */
}

See also