API In CPP

From MikroTik Wiki
Jump to navigation Jump to search

This is written in C++. The code is based highly on the code from API In C. I like the way this was done in respect to how easy it is to send a command and get a block of sentences back that are easily parsed.

I have removed all the memory leaks and converted it entirely to C++. There is only a few places using any memory allocation and that is mostly in the encoding as its much easier to do with dynamic char arrays. I have made it so it can be compiled in Xcode for use in Obj C++ and should work fine in any other platform with little or no extra work.

This implementation relies on the MD5 digest calculation functions written by Aladdin Enterprises ([1]). An endian test (big/little endian) is also used courtesy GRASS Development Team ([2]). All functions/libraries used from other sources are available under open licenses such as GNU Public License.

Features: Written using C++ Leak Free Supports *nix Platforms including Mac Sentences will return a map object (so no parsing needed really)

Pre-requisite MD5 calculation function header file (md5.h)


/*
  Copyright (C) 1999, 2002 Aladdin Enterprises.  All rights reserved.

  This software is provided 'as-is', without any express or implied
  warranty.  In no event will the authors be held liable for any damages
  arising from the use of this software.

  Permission is granted to anyone to use this software for any purpose,
  including commercial applications, and to alter it and redistribute it
  freely, subject to the following restrictions:

  1. The origin of this software must not be misrepresented; you must not
     claim that you wrote the original software. If you use this software
     in a product, an acknowledgment in the product documentation would be
     appreciated but is not required.
  2. Altered source versions must be plainly marked as such, and must not be
     misrepresented as being the original software.
  3. This notice may not be removed or altered from any source distribution.

  L. Peter Deutsch
  ghost@aladdin.com

 */
/* $Id: md5.h,v 1.4 2002/04/13 19:20:28 lpd Exp $ */
/*
  Independent implementation of MD5 (RFC 1321).

  This code implements the MD5 Algorithm defined in RFC 1321, whose
  text is available at
	http://www.ietf.org/rfc/rfc1321.txt
  The code is derived from the text of the RFC, including the test suite
  (section A.5) but excluding the rest of Appendix A.  It does not include
  any code or documentation that is identified in the RFC as being
  copyrighted.

  The original and principal author of md5.h is L. Peter Deutsch
  <ghost@aladdin.com>.  Other authors are noted in the change history
  that follows (in reverse chronological order):

  2002-04-13 lpd Removed support for non-ANSI compilers; removed
	references to Ghostscript; clarified derivation from RFC 1321;
	now handles byte order either statically or dynamically.
  1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
  1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5);
	added conditionalization for C++ compilation from Martin
	Purschke <purschke@bnl.gov>.
  1999-05-03 lpd Original version.
 */

#ifndef md5_INCLUDED
#  define md5_INCLUDED

/*
 * This package supports both compile-time and run-time determination of CPU
 * byte order.  If ARCH_IS_BIG_ENDIAN is defined as 0, the code will be
 * compiled to run only on little-endian CPUs; if ARCH_IS_BIG_ENDIAN is
 * defined as non-zero, the code will be compiled to run only on big-endian
 * CPUs; if ARCH_IS_BIG_ENDIAN is not defined, the code will be compiled to
 * run on either big- or little-endian CPUs, but will run slightly less
 * efficiently on either one than if ARCH_IS_BIG_ENDIAN is defined.
 */

typedef unsigned char md5_byte_t; /* 8-bit byte */
typedef unsigned int md5_word_t; /* 32-bit word */

/* Define the state of the MD5 Algorithm. */
typedef struct md5_state_s {
    md5_word_t count[2];	/* message length in bits, lsw first */
    md5_word_t abcd[4];		/* digest buffer */
    md5_byte_t buf[64];		/* accumulate block */
} md5_state_t;

#ifdef __cplusplus
extern "C" 
{
#endif

/* Initialize the algorithm. */
void md5_init(md5_state_t *pms);

/* Append a string to the message. */
void md5_append(md5_state_t *pms, const md5_byte_t *data, int nbytes);

/* Finish the message and return the digest. */
void md5_finish(md5_state_t *pms, md5_byte_t digest[16]);

#ifdef __cplusplus
}  /* end extern "C" */
#endif

#endif /* md5_INCLUDED */


Pre-requisite MD5 calculation function source file (md5.c)


/*
  Copyright (C) 1999, 2000, 2002 Aladdin Enterprises.  All rights reserved.

  This software is provided 'as-is', without any express or implied
  warranty.  In no event will the authors be held liable for any damages
  arising from the use of this software.

  Permission is granted to anyone to use this software for any purpose,
  including commercial applications, and to alter it and redistribute it
  freely, subject to the following restrictions:

  1. The origin of this software must not be misrepresented; you must not
     claim that you wrote the original software. If you use this software
     in a product, an acknowledgment in the product documentation would be
     appreciated but is not required.
  2. Altered source versions must be plainly marked as such, and must not be
     misrepresented as being the original software.
  3. This notice may not be removed or altered from any source distribution.

  L. Peter Deutsch
  ghost@aladdin.com

 */
/* $Id: md5.c,v 1.6 2002/04/13 19:20:28 lpd Exp $ */
/*
  Independent implementation of MD5 (RFC 1321).

  This code implements the MD5 Algorithm defined in RFC 1321, whose
  text is available at
	http://www.ietf.org/rfc/rfc1321.txt
  The code is derived from the text of the RFC, including the test suite
  (section A.5) but excluding the rest of Appendix A.  It does not include
  any code or documentation that is identified in the RFC as being
  copyrighted.

  The original and principal author of md5.c is L. Peter Deutsch
  <ghost@aladdin.com>.  Other authors are noted in the change history
  that follows (in reverse chronological order):

  2002-04-13 lpd Clarified derivation from RFC 1321; now handles byte order
	either statically or dynamically; added missing #include <string.h>
	in library.
  2002-03-11 lpd Corrected argument list for main(), and added int return
	type, in test program and T value program.
  2002-02-21 lpd Added missing #include <stdio.h> in test program.
  2000-07-03 lpd Patched to eliminate warnings about "constant is
	unsigned in ANSI C, signed in traditional"; made test program
	self-checking.
  1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
  1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5).
  1999-05-03 lpd Original version.
 */

#include "md5.h"
#include <string.h>

#undef BYTE_ORDER	/* 1 = big-endian, -1 = little-endian, 0 = unknown */
#ifdef ARCH_IS_BIG_ENDIAN
#  define BYTE_ORDER (ARCH_IS_BIG_ENDIAN ? 1 : -1)
#else
#  define BYTE_ORDER 0
#endif

#define T_MASK ((md5_word_t)~0)
#define T1 /* 0xd76aa478 */ (T_MASK ^ 0x28955b87)
#define T2 /* 0xe8c7b756 */ (T_MASK ^ 0x173848a9)
#define T3    0x242070db
#define T4 /* 0xc1bdceee */ (T_MASK ^ 0x3e423111)
#define T5 /* 0xf57c0faf */ (T_MASK ^ 0x0a83f050)
#define T6    0x4787c62a
#define T7 /* 0xa8304613 */ (T_MASK ^ 0x57cfb9ec)
#define T8 /* 0xfd469501 */ (T_MASK ^ 0x02b96afe)
#define T9    0x698098d8
#define T10 /* 0x8b44f7af */ (T_MASK ^ 0x74bb0850)
#define T11 /* 0xffff5bb1 */ (T_MASK ^ 0x0000a44e)
#define T12 /* 0x895cd7be */ (T_MASK ^ 0x76a32841)
#define T13    0x6b901122
#define T14 /* 0xfd987193 */ (T_MASK ^ 0x02678e6c)
#define T15 /* 0xa679438e */ (T_MASK ^ 0x5986bc71)
#define T16    0x49b40821
#define T17 /* 0xf61e2562 */ (T_MASK ^ 0x09e1da9d)
#define T18 /* 0xc040b340 */ (T_MASK ^ 0x3fbf4cbf)
#define T19    0x265e5a51
#define T20 /* 0xe9b6c7aa */ (T_MASK ^ 0x16493855)
#define T21 /* 0xd62f105d */ (T_MASK ^ 0x29d0efa2)
#define T22    0x02441453
#define T23 /* 0xd8a1e681 */ (T_MASK ^ 0x275e197e)
#define T24 /* 0xe7d3fbc8 */ (T_MASK ^ 0x182c0437)
#define T25    0x21e1cde6
#define T26 /* 0xc33707d6 */ (T_MASK ^ 0x3cc8f829)
#define T27 /* 0xf4d50d87 */ (T_MASK ^ 0x0b2af278)
#define T28    0x455a14ed
#define T29 /* 0xa9e3e905 */ (T_MASK ^ 0x561c16fa)
#define T30 /* 0xfcefa3f8 */ (T_MASK ^ 0x03105c07)
#define T31    0x676f02d9
#define T32 /* 0x8d2a4c8a */ (T_MASK ^ 0x72d5b375)
#define T33 /* 0xfffa3942 */ (T_MASK ^ 0x0005c6bd)
#define T34 /* 0x8771f681 */ (T_MASK ^ 0x788e097e)
#define T35    0x6d9d6122
#define T36 /* 0xfde5380c */ (T_MASK ^ 0x021ac7f3)
#define T37 /* 0xa4beea44 */ (T_MASK ^ 0x5b4115bb)
#define T38    0x4bdecfa9
#define T39 /* 0xf6bb4b60 */ (T_MASK ^ 0x0944b49f)
#define T40 /* 0xbebfbc70 */ (T_MASK ^ 0x4140438f)
#define T41    0x289b7ec6
#define T42 /* 0xeaa127fa */ (T_MASK ^ 0x155ed805)
#define T43 /* 0xd4ef3085 */ (T_MASK ^ 0x2b10cf7a)
#define T44    0x04881d05
#define T45 /* 0xd9d4d039 */ (T_MASK ^ 0x262b2fc6)
#define T46 /* 0xe6db99e5 */ (T_MASK ^ 0x1924661a)
#define T47    0x1fa27cf8
#define T48 /* 0xc4ac5665 */ (T_MASK ^ 0x3b53a99a)
#define T49 /* 0xf4292244 */ (T_MASK ^ 0x0bd6ddbb)
#define T50    0x432aff97
#define T51 /* 0xab9423a7 */ (T_MASK ^ 0x546bdc58)
#define T52 /* 0xfc93a039 */ (T_MASK ^ 0x036c5fc6)
#define T53    0x655b59c3
#define T54 /* 0x8f0ccc92 */ (T_MASK ^ 0x70f3336d)
#define T55 /* 0xffeff47d */ (T_MASK ^ 0x00100b82)
#define T56 /* 0x85845dd1 */ (T_MASK ^ 0x7a7ba22e)
#define T57    0x6fa87e4f
#define T58 /* 0xfe2ce6e0 */ (T_MASK ^ 0x01d3191f)
#define T59 /* 0xa3014314 */ (T_MASK ^ 0x5cfebceb)
#define T60    0x4e0811a1
#define T61 /* 0xf7537e82 */ (T_MASK ^ 0x08ac817d)
#define T62 /* 0xbd3af235 */ (T_MASK ^ 0x42c50dca)
#define T63    0x2ad7d2bb
#define T64 /* 0xeb86d391 */ (T_MASK ^ 0x14792c6e)


static void
md5_process(md5_state_t *pms, const md5_byte_t *data /*[64]*/)
{
    md5_word_t
	a = pms->abcd[0], b = pms->abcd[1],
	c = pms->abcd[2], d = pms->abcd[3];
    md5_word_t t;
#if BYTE_ORDER > 0
    /* Define storage only for big-endian CPUs. */
    md5_word_t X[16];
#else
    /* Define storage for little-endian or both types of CPUs. */
    md5_word_t xbuf[16];
    const md5_word_t *X;
#endif

    {
#if BYTE_ORDER == 0
	/*
	 * Determine dynamically whether this is a big-endian or
	 * little-endian machine, since we can use a more efficient
	 * algorithm on the latter.
	 */
	static const int w = 1;

	if (*((const md5_byte_t *)&w)) /* dynamic little-endian */
#endif
#if BYTE_ORDER <= 0		/* little-endian */
	{
	    /*
	     * On little-endian machines, we can process properly aligned
	     * data without copying it.
	     */
	    if (!((data - (const md5_byte_t *)0) & 3)) {
		/* data are properly aligned */
		X = (const md5_word_t *)data;
	    } else {
		/* not aligned */
		memcpy(xbuf, data, 64);
		X = xbuf;
	    }
	}
#endif
#if BYTE_ORDER == 0
	else			/* dynamic big-endian */
#endif
#if BYTE_ORDER >= 0		/* big-endian */
	{
	    /*
	     * On big-endian machines, we must arrange the bytes in the
	     * right order.
	     */
	    const md5_byte_t *xp = data;
	    int i;

#  if BYTE_ORDER == 0
	    X = xbuf;		/* (dynamic only) */
#  else
#    define xbuf X		/* (static only) */
#  endif
	    for (i = 0; i < 16; ++i, xp += 4)
		xbuf[i] = xp[0] + (xp[1] << 8) + (xp[2] << 16) + (xp[3] << 24);
	}
#endif
    }

#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n))))

    /* Round 1. */
    /* Let [abcd k s i] denote the operation
       a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */
#define F(x, y, z) (((x) & (y)) | (~(x) & (z)))
#define SET(a, b, c, d, k, s, Ti)\
  t = a + F(b,c,d) + X[k] + Ti;\
  a = ROTATE_LEFT(t, s) + b
    /* Do the following 16 operations. */
    SET(a, b, c, d,  0,  7,  T1);
    SET(d, a, b, c,  1, 12,  T2);
    SET(c, d, a, b,  2, 17,  T3);
    SET(b, c, d, a,  3, 22,  T4);
    SET(a, b, c, d,  4,  7,  T5);
    SET(d, a, b, c,  5, 12,  T6);
    SET(c, d, a, b,  6, 17,  T7);
    SET(b, c, d, a,  7, 22,  T8);
    SET(a, b, c, d,  8,  7,  T9);
    SET(d, a, b, c,  9, 12, T10);
    SET(c, d, a, b, 10, 17, T11);
    SET(b, c, d, a, 11, 22, T12);
    SET(a, b, c, d, 12,  7, T13);
    SET(d, a, b, c, 13, 12, T14);
    SET(c, d, a, b, 14, 17, T15);
    SET(b, c, d, a, 15, 22, T16);
#undef SET

     /* Round 2. */
     /* Let [abcd k s i] denote the operation
          a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */
#define G(x, y, z) (((x) & (z)) | ((y) & ~(z)))
#define SET(a, b, c, d, k, s, Ti)\
  t = a + G(b,c,d) + X[k] + Ti;\
  a = ROTATE_LEFT(t, s) + b
     /* Do the following 16 operations. */
    SET(a, b, c, d,  1,  5, T17);
    SET(d, a, b, c,  6,  9, T18);
    SET(c, d, a, b, 11, 14, T19);
    SET(b, c, d, a,  0, 20, T20);
    SET(a, b, c, d,  5,  5, T21);
    SET(d, a, b, c, 10,  9, T22);
    SET(c, d, a, b, 15, 14, T23);
    SET(b, c, d, a,  4, 20, T24);
    SET(a, b, c, d,  9,  5, T25);
    SET(d, a, b, c, 14,  9, T26);
    SET(c, d, a, b,  3, 14, T27);
    SET(b, c, d, a,  8, 20, T28);
    SET(a, b, c, d, 13,  5, T29);
    SET(d, a, b, c,  2,  9, T30);
    SET(c, d, a, b,  7, 14, T31);
    SET(b, c, d, a, 12, 20, T32);
#undef SET

     /* Round 3. */
     /* Let [abcd k s t] denote the operation
          a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */
#define H(x, y, z) ((x) ^ (y) ^ (z))
#define SET(a, b, c, d, k, s, Ti)\
  t = a + H(b,c,d) + X[k] + Ti;\
  a = ROTATE_LEFT(t, s) + b
     /* Do the following 16 operations. */
    SET(a, b, c, d,  5,  4, T33);
    SET(d, a, b, c,  8, 11, T34);
    SET(c, d, a, b, 11, 16, T35);
    SET(b, c, d, a, 14, 23, T36);
    SET(a, b, c, d,  1,  4, T37);
    SET(d, a, b, c,  4, 11, T38);
    SET(c, d, a, b,  7, 16, T39);
    SET(b, c, d, a, 10, 23, T40);
    SET(a, b, c, d, 13,  4, T41);
    SET(d, a, b, c,  0, 11, T42);
    SET(c, d, a, b,  3, 16, T43);
    SET(b, c, d, a,  6, 23, T44);
    SET(a, b, c, d,  9,  4, T45);
    SET(d, a, b, c, 12, 11, T46);
    SET(c, d, a, b, 15, 16, T47);
    SET(b, c, d, a,  2, 23, T48);
#undef SET

     /* Round 4. */
     /* Let [abcd k s t] denote the operation
          a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */
#define I(x, y, z) ((y) ^ ((x) | ~(z)))
#define SET(a, b, c, d, k, s, Ti)\
  t = a + I(b,c,d) + X[k] + Ti;\
  a = ROTATE_LEFT(t, s) + b
     /* Do the following 16 operations. */
    SET(a, b, c, d,  0,  6, T49);
    SET(d, a, b, c,  7, 10, T50);
    SET(c, d, a, b, 14, 15, T51);
    SET(b, c, d, a,  5, 21, T52);
    SET(a, b, c, d, 12,  6, T53);
    SET(d, a, b, c,  3, 10, T54);
    SET(c, d, a, b, 10, 15, T55);
    SET(b, c, d, a,  1, 21, T56);
    SET(a, b, c, d,  8,  6, T57);
    SET(d, a, b, c, 15, 10, T58);
    SET(c, d, a, b,  6, 15, T59);
    SET(b, c, d, a, 13, 21, T60);
    SET(a, b, c, d,  4,  6, T61);
    SET(d, a, b, c, 11, 10, T62);
    SET(c, d, a, b,  2, 15, T63);
    SET(b, c, d, a,  9, 21, T64);
#undef SET

     /* Then perform the following additions. (That is increment each
        of the four registers by the value it had before this block
        was started.) */
    pms->abcd[0] += a;
    pms->abcd[1] += b;
    pms->abcd[2] += c;
    pms->abcd[3] += d;
}

void
md5_init(md5_state_t *pms)
{
    pms->count[0] = pms->count[1] = 0;
    pms->abcd[0] = 0x67452301;
    pms->abcd[1] = /*0xefcdab89*/ T_MASK ^ 0x10325476;
    pms->abcd[2] = /*0x98badcfe*/ T_MASK ^ 0x67452301;
    pms->abcd[3] = 0x10325476;
}

void
md5_append(md5_state_t *pms, const md5_byte_t *data, int nbytes)
{
    const md5_byte_t *p = data;
    int left = nbytes;
    int offset = (pms->count[0] >> 3) & 63;
    md5_word_t nbits = (md5_word_t)(nbytes << 3);

    if (nbytes <= 0)
	return;

    /* Update the message length. */
    pms->count[1] += nbytes >> 29;
    pms->count[0] += nbits;
    if (pms->count[0] < nbits)
	pms->count[1]++;

    /* Process an initial partial block. */
    if (offset) {
	int copy = (offset + nbytes > 64 ? 64 - offset : nbytes);

	memcpy(pms->buf + offset, p, copy);
	if (offset + copy < 64)
	    return;
	p += copy;
	left -= copy;
	md5_process(pms, pms->buf);
    }

    /* Process full blocks. */
    for (; left >= 64; p += 64, left -= 64)
	md5_process(pms, p);

    /* Process a final partial block. */
    if (left)
	memcpy(pms->buf, p, left);
}

void
md5_finish(md5_state_t *pms, md5_byte_t digest[16])
{
    static const md5_byte_t pad[64] = {
	0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
    };
    md5_byte_t data[8];
    int i;

    /* Save the length before padding. */
    for (i = 0; i < 8; ++i)
	data[i] = (md5_byte_t)(pms->count[i >> 2] >> ((i & 3) << 3));
    /* Pad to 56 bytes mod 64. */
    md5_append(pms, pad, ((55 - (pms->count[0] >> 3)) & 63) + 1);
    /* Append the length. */
    md5_append(pms, data, 8);
    for (i = 0; i < 16; ++i)
	digest[i] = (md5_byte_t)(pms->abcd[i >> 2] >> ((i & 3) << 3));
}

Mikrotik API Types header file (MikrotikAPITypes.h)

This is the API Types header file. This file contains the Sentence and Block classes.

Notes:

  • DEBUG flag is defined for debugging purposes...generates alot of internal data via printf
  • NONE, DONE, TRAP and FATAL constants are defined
  • Use void GetMap(int index, std::map<std::string, std::string> &sentenceMap); method for getting a map of words for a sentence.
    • Each word in a sentence is stored as a string. Sentence structs contain individual API words (stored as an vector of strings).
    • Block structs represent the full API response...an array of sentences. Blocks are not defined in the Mikrotik API specs, but are a convenient way to represent a full API response in the context of this implementation.



//
//  MikrotikAPITypes.h
//  WinboxMobile
//
//  Created by Joey Gentry on 2/11/10.
//  Copyright 2010 __MyCompanyName__. All rights reserved.
//

#include <vector>
#include <map>
#include <string>

#define DEBUG 1

#define NONE 0
#define DONE 1
#define TRAP 2
#define FATAL 3

class Sentence {
	std::vector<std::string> strWords;    // vecor of strings representing individual words
	int returnType;     // return type of sentence
	void Tokenize(const std::string &str, std::vector<std::string> &tokens, 
                            const std::string &delimiters = " ");
	
	
public:
	void SetReturnType(int returnTypeIn) { returnType = returnTypeIn; }
	int GetReturnType() { return returnType; }
	void AddWord(const std::string &strWordToAdd) { strWords.push_back(strWordToAdd); }
	void Clear() { strWords.clear(); returnType = 0; }
	int Length() { return strWords.size(); }
	std::string operator[](int index) { return strWords[index]; }
	std::string GetWord(int index) { return strWords[index]; }
	void GetMap(int index, std::map<std::string, std::string> &sentenceMap);
	bool Print();
};


class Block {
	std::vector<Sentence> sentences;
	
public:
	int Length() { return sentences.size(); }
	void AddSentence(const Sentence &sentence);
	void Clear() { sentences.clear(); }
	Sentence operator[](int index) { return sentences[index]; }
	bool Print();
};

Mikrotik API Types source file (MikrotikAPITypes.cpp)


//
//  untitled.mm
//  WinboxMobile
//
//  Created by Joey Gentry on 2/13/10.
//  Copyright 2010 __MyCompanyName__. All rights reserved.
//

#include "MikrotikAPITypes.h"

using namespace std;

/********************************************************************
 * Print a sentence.
 ********************************************************************/
bool Sentence::Print()
{
	DEBUG ? printf("Sentence Word Count = %d\n", strWords.size()) : 0;
	DEBUG ? printf("Sentence returnType = %d\n", returnType) : 0;
	
	for (int i = 0; i < strWords.size(); ++i) {
		printf("%s\n", strWords[i].c_str());
	}
	
	printf("\n");
	
	return true;
}

void Sentence::GetMap(map<string, string> &sentenceMap)
{
	for (int i = 0; i < strWords.size(); ++i) {
		string tmpDataString = strWords[i];
		vector<string> dataStrings;
		Tokenize(tmpDataString, dataStrings, "=");

		if (returnType == NONE && dataStrings.size() > 1) {
			sentenceMap.insert(make_pair(dataStrings[1], dataStrings[2]));
		}
	}
}

void Sentence::Tokenize(const string &str, vector<string> &tokens, const string &delimiters)
{
	// Skip delimiters at beginning.
    string::size_type lastPos = str.find_first_not_of(delimiters, 0);
    // Find first "non-delimiter".
    string::size_type pos     = str.find_first_of(delimiters, lastPos);
	
    while (string::npos != pos || string::npos != lastPos)
    {
        // Found a token, add it to the vector.
        tokens.push_back(str.substr(lastPos, pos - lastPos));
        // Skip delimiters.  Note the "not_of"
        lastPos = str.find_first_not_of(delimiters, pos);
        // Find next "non-delimiter"
        pos = str.find_first_of(delimiters, lastPos);
    }
}

/********************************************************************
 * Add a Sentence to a block
 ********************************************************************/
void Block::AddSentence(const Sentence &sentence)
{	
	sentences.push_back(sentence);
	
	DEBUG ? printf("AddSentenceToBlock Size=%d\n", sentences.size()) : 0;
}

/********************************************************************
 * Print a block.
 ********************************************************************/
bool Block::Print()
{
	DEBUG ? printf("PrintBlock\n") : 0;
	DEBUG ? printf("Block Size = %d\n", sentences.size()) : 0;
	
	for (int i = 0; i < sentences.size(); ++i) {
		sentences[i].Print();
	}
	
	return true;
}

Mikrotik API header file (MikrotikAPI.h)

This is the API header file. This file contains the MikrotikAPI class.

Notes:

  • NOCONNECT, NOLOGIN constants are defined.

/********************************************************************
 * Some definitions
 * Word = piece of API code
 * Sentence = multiple words
 * Block = multiple sentences (usually in response to a Sentence request)
 * 
 
 try {
	MikrotikAPI mt = MikrotikAPI("64.126.135.214", "test", "joey", 8728);
 
	Sentence sentence;
	Block block;
 
	// Fill and send sentence to the API
	sentence.AddWord("/interface/getall");
	mt.WriteSentence(sentence);
 
	// receive and print block from the API
	mt.ReadBlock(block);
	block.Print();
 } catch (int e) {
	if(e == NOCONNECT)
		printf("Could not connect.\n");
	if(e == NOLOGIN)
		printf("Could not login.\n");
 }
 
 
 Original Author: Joey Gentry (www.Murderdev.com)
 Feel freel to ask me questions but I can't guarantee I will be able to answer them all. 
 No warranties are provided with this
 code. This was written/converted for my iPhone app to allow accessing a Mikrotik router. 
 The app is called Winbox Mobile for those who are interested.
 
 This is written in C++. The code is based highly on the code from 
  http://wiki.mikrotik.com/wiki/API_in_C. I like the way this was done in respect to how easy 
  it is to send a command and get a block of sentences back that are easily parsed.
 
 I have removed all the memory leaks and converted it entirely to C++. There is only a few 
 places using any memory allocation and that is mostly in the encoding as its much easier 
 to do with dynamic char arrays. I have made it so it can be compiled in Xcode for use in 
 Obj C++ and should work fine in any other platform with little or no extra work.
 
 This implementation relies on the MD5 digest calculation functions written by 
 Aladdin Enterprises http://sourceforge.net/projects/libmd5-rfc/files/. An endian test 
 (big/little endian) is also used courtesy GRASS Development Team  
 http://download.osgeo.org/grass/grass6_progman/endian_8c.html. All functions/libraries used 
 from other sources are available under open licenses such as GNU Public License.
 
 Features:
 Written using C++
 Leak Free
 Supports *nix Platforms including Mac
 Sentences will return a map object (so no parsing needed really)
 
 ********************************************************************/

#include<sys/socket.h>
#include<arpa/inet.h>
#include <vector>
#include <string>
#include "md5.h"
#include "MikrotikAPITypes.h"

#define NOCONNECT 1
#define NOLOGIN 2

class MikrotikAPI  {
	private:
		int fdSock;
		bool littleEndian;
	
		bool IsLittleEndian();
	
		void Connect(const std::string &strIpAddress, int port);
		void Disconnect();
	
		// Word
		void WriteLength(int messageLength);
		int ReadLength();
		void WriteWord(const std::string &strWord);
		void ReadWord(std::string &strWordOut);
	
		// MD5 helper functions
		std::string MD5DigestToHexString(md5_byte_t *binaryDigest);
		std::string MD5ToBinary(const std::string &strHex);
		char HexStringToChar(const std::string &hexToConvert);
	
	public:
	MikrotikAPI();
		MikrotikAPI(const std::string &strIpAddress, const std::string &strUsername, 
                                const std::string &strPassword, int port);
		~MikrotikAPI();
	
		// API specific functions
		int Login(const std::string &strUsername, const std::string &strPassword);
		
		// Sentence
		void WriteSentence(Sentence &writeSentence);
		void ReadSentence(Sentence &sentenceOut);
		
		// Block
		void ReadBlock(Block &block);	
};

Mikrotik API source file (MikrotikAPI.cpp)


#include "MikrotikAPI.h"

using namespace std;

MikrotikAPI::MikrotikAPI(const string &strIpAddress, const string &strUsername, 
                                    const string &strPassword, int port)
{	
	Connect(strIpAddress, port);
	
	if(fdSock != -1) {
		
		// attempt login
		int loginResult = Login(strUsername, strPassword);
		
		if (!loginResult) {
			throw NOLOGIN;
			Disconnect();
			printf("Invalid username or password.\n");
		} else {
			printf("Logged in successfully.\n");
		}
	} else {
		throw NOCONNECT;
	}
}

MikrotikAPI::~MikrotikAPI()
{
	if(fdSock != -1)
		Disconnect();
}

/********************************************************************
 * Connect to API
 * Returns a socket descriptor
 ********************************************************************/
void MikrotikAPI::Connect(const string &strIpAddress, int port)
{
	struct sockaddr_in address;
	int connectResult;
	int addressSize;
	
	fdSock = socket(AF_INET, SOCK_STREAM, 0);
	
	address.sin_family = AF_INET;
	address.sin_addr.s_addr = inet_addr(strIpAddress.c_str());
	address.sin_port = htons(port);
	addressSize = sizeof(address);
	
	DEBUG ? printf("Connecting to %s\n", strIpAddress.c_str()) : 0;
	
	connectResult = connect(fdSock, (struct sockaddr *)&address, addressSize);
	
	if(connectResult==-1) {
		perror ("Connection problem");
		Disconnect();
		fdSock = -1;
	} else {
		DEBUG ? printf("Successfully connected to %s\n", strIpAddress.c_str()) : 0;
	}
	
	// determine endianness of this machine
	// iLittleEndian will be set to 1 if we are
	// on a little endian machine...otherwise
	// we are assumed to be on a big endian processor
	littleEndian = IsLittleEndian();
}

/********************************************************************
 * Disconnect from API
 * Close the API socket
 ********************************************************************/
void MikrotikAPI::Disconnect()
{
	if(fdSock != -1) {
		DEBUG ? printf("Closing socket\n") : 0;
	
		close(fdSock);
	}
}

/********************************************************************
 * Login to the API
 * 1 is returned on successful login
 * 0 is returned on unsuccessful login
 ********************************************************************/
int MikrotikAPI::Login(const string &strUsername, const string &strPassword)
{
	Sentence readSentence;
	Sentence writeSentence;
	
	md5_state_t state;
	md5_byte_t digest[16];
	char cNull[1] = {0};
	
	//Send login message
	WriteWord("/login");
	WriteWord(cNull);
	
	ReadSentence(readSentence);
	DEBUG ? readSentence.Print() : 0;
	
	if (readSentence.GetReturnType() != DONE) {
		printf("Error.\n");
	} else {
	
		// extract md5 string from the challenge sentence
		char *strWord = new char [readSentence[1].size() + 1];
		strcpy(strWord, readSentence[1].c_str());
		char *md5Challenge = strtok(strWord, "=");	
		md5Challenge = strtok(NULL, "=");
		
		DEBUG ? printf("MD5 of challenge = %s\n", md5Challenge) : 0;
		
		////Place of interest: Check to see if this md5Challenge string works as as string. 
                //   It may not because it needs to be binary.
		// convert szMD5Challenge to binary
		string md5ChallengeBinary = MD5ToBinary(md5Challenge);
		delete[] strWord;
		
		// get md5 of the password + challenge concatenation
		md5_init(&state);
		md5_append(&state, (const md5_byte_t *)cNull, 1);
		md5_append(&state, (const md5_byte_t *)strPassword.c_str(), 
                                 strlen(strPassword.c_str()));
		md5_append(&state, (const md5_byte_t *)md5ChallengeBinary.c_str(), 16);
		md5_finish(&state, digest);
		
		// convert this digest to a string representation of the hex values
		// digest is the binary format of what we want to send
		// szMD5PasswordToSend is the "string" hex format
		string md5PasswordToSend = MD5DigestToHexString(digest);
		
		DEBUG ? printf("MD5 Password To Send = %s\n", md5PasswordToSend.c_str()) : 0;
		
		// put together the login sentence
		writeSentence.AddWord("/login");
		writeSentence.AddWord("=name=" + strUsername);
		writeSentence.AddWord("=response=00" + md5PasswordToSend);
		
		DEBUG ? writeSentence.Print() : 0;
		WriteSentence(writeSentence);
		
		ReadSentence(readSentence);
		DEBUG ? readSentence.Print() : 0;
		
		if (readSentence.GetReturnType() == DONE) {
			return 1;
		} 
	}
	return 0;
}

/********************************************************************
 * Encode message length and write it out to the socket
 ********************************************************************/
void MikrotikAPI::WriteLength(int messageLength)
{
	char *encodedLengthData;  // encoded length to send to the api socket
	char *lengthData;     // exactly what is in memory at &iLen integer
	
	encodedLengthData = (char *)calloc(sizeof(int), 1);
	
	// set cLength address to be same as messageLength
	lengthData = (char *)&messageLength;
	
	DEBUG ? printf("Length of word is %d\n", messageLength) : 0;
	
	// write 1 byte
	if (messageLength < 0x80) {
		encodedLengthData[0] = (char)messageLength;
		write (fdSock, encodedLengthData, 1);
	} else if (messageLength < 0x4000) { // write 2 bytes
		DEBUG ? printf("messageLength < 0x4000.\n") : 0;
		
		if (littleEndian) {
			encodedLengthData[0] = lengthData[1] | 0x80;
			encodedLengthData[1] = lengthData[0];
		} else {
			encodedLengthData[0] = lengthData[2] | 0x80;
			encodedLengthData[1] = lengthData[3];
		}
		
		write (fdSock, encodedLengthData, 2);
	} else if (messageLength < 0x200000) { // write 3 bytes
		DEBUG ? printf("messageLength < 0x200000.\n") : 0;
		
		if (littleEndian) {
			encodedLengthData[0] = lengthData[2] | 0xc0;
			encodedLengthData[1] = lengthData[1];
			encodedLengthData[2] = lengthData[0];
		} else {
			encodedLengthData[0] = lengthData[1] | 0xc0;
			encodedLengthData[1] = lengthData[2];
			encodedLengthData[2] = lengthData[3];
		}
		
		write (fdSock, encodedLengthData, 3);
	} else if (messageLength < 0x10000000) { // write 4 bytes (untested)
		DEBUG ? printf("messageLength < 0x10000000.\n") : 0;
		
		if (littleEndian) {
			encodedLengthData[0] = lengthData[3] | 0xe0;
			encodedLengthData[1] = lengthData[2];
			encodedLengthData[2] = lengthData[1];
			encodedLengthData[3] = lengthData[0];
		} else {
			encodedLengthData[0] = lengthData[0] | 0xe0;
			encodedLengthData[1] = lengthData[1];
			encodedLengthData[2] = lengthData[2];
			encodedLengthData[3] = lengthData[3];
		}
		
		write (fdSock, encodedLengthData, 4);
	} else  { // this should never happen
		printf("Length of word is %d\n", messageLength);
		printf("Word is too long.\n");
	}
	
	delete [] encodedLengthData;	
}

/********************************************************************
 * Write a word to the socket
 ********************************************************************/
void MikrotikAPI::WriteWord(const string &strWord)
{
	DEBUG ? printf("Word to write is %s\n", strWord.c_str()) : 0;
	WriteLength(strWord.length());
	write(fdSock, strWord.c_str(), strWord.length());
}

/********************************************************************
 * Write a Sentence (multiple words) to the socket
 ********************************************************************/
void MikrotikAPI::WriteSentence(Sentence &writeSentence)
{
	if (writeSentence.Length() == 0) {
		return;
	}
	
	DEBUG ? printf("Writing sentence\n"): 0;
	DEBUG ? writeSentence.Print() : 0;
	
	for (int i = 0; i < writeSentence.Length(); ++i) {
		WriteWord(writeSentence[i]);
	}
	
	WriteWord("\0");
}

/********************************************************************
 * Read a message length from the socket
 * 
 * 80 = 10000000 (2 character encoded length)
 * C0 = 11000000 (3 character encoded length)
 * E0 = 11100000 (4 character encoded length)
 *
 * Message length is returned
 ********************************************************************/
int MikrotikAPI::ReadLength()
{
	char firstChar; // first character read from socket
	char *lengthData;   // length of next message to read...will be cast to int at the end
	int *messageLength;       // calculated length of next message (Cast to int)
	
	lengthData = (char *) calloc(sizeof(int), 1);
	
	DEBUG ? printf("Start ReadLength()\n") : 0;
	
	read(fdSock, &firstChar, 1);
	
	DEBUG ? printf("byte1 = %#x\n", firstChar) : 0;
	
	// read 4 bytes
	// this code SHOULD work, but is untested...
	if ((firstChar & 0xE0) == 0xE0) {
		DEBUG ? printf("4-byte encoded length\n") : 0;
		
		if (littleEndian){
			lengthData[3] = firstChar;
			lengthData[3] &= 0x1f;        // mask out the 1st 3 bits
			read(fdSock, &lengthData[2], 1);
			read(fdSock, &lengthData[1], 1);
			read(fdSock, &lengthData[0], 1);
		} else {
			lengthData[0] = firstChar;
			lengthData[0] &= 0x1f;        // mask out the 1st 3 bits
			read(fdSock, &lengthData[1], 1);
			read(fdSock, &lengthData[2], 1);
			read(fdSock, &lengthData[3], 1);
		}
		
		messageLength = (int *)lengthData;
	} else if ((firstChar & 0xC0) == 0xC0) { // read 3 bytes
		DEBUG ? printf("3-byte encoded length\n") : 0;
		
		if (littleEndian) {
			lengthData[2] = firstChar;
			lengthData[2] &= 0x3f;        // mask out the 1st 2 bits
			read(fdSock, &lengthData[1], 1);
			read(fdSock, &lengthData[0], 1);
		} else {
			lengthData[1] = firstChar;
			lengthData[1] &= 0x3f;        // mask out the 1st 2 bits
			read(fdSock, &lengthData[2], 1);
			read(fdSock, &lengthData[3], 1);
		}
		
		messageLength = (int *)lengthData;
	} else if ((firstChar & 0x80) == 0x80) { // read 2 bytes
		DEBUG ? printf("2-byte encoded length\n") : 0;
		
		if (littleEndian) {
			lengthData[1] = firstChar;
			lengthData[1] &= 0x7f;        // mask out the 1st bit
			read(fdSock, &lengthData[0], 1);
		} else {
			lengthData[2] = firstChar;
			lengthData[2] &= 0x7f;        // mask out the 1st bit
			read(fdSock, &lengthData[3], 1);
		}
		
		messageLength = (int *)lengthData;
	} else { // assume 1-byte encoded length...same on both LE and BE systems
		DEBUG ? printf("1-byte encoded length\n") : 0;
		messageLength = (int *) malloc(sizeof(int));
		*messageLength = (int)firstChar;
	}
	
	int retMessageLength = *messageLength;
	delete messageLength;
	delete [] lengthData;
	
	return retMessageLength;
}

/********************************************************************
 * Read a word from the socket
 * The word that was read is returned as a string
 ********************************************************************/
void MikrotikAPI::ReadWord(string &strWordOut)
{
	int messageLength = ReadLength();
	int bytesToRead = 0;
	int bytesRead = 0;
	
	char *tmpWord;
	
	DEBUG ? printf("ReadWord messageLength=%x\n", messageLength) : 0;
	
	strWordOut.clear();
	if (messageLength > 0) {
		// allocate memory for strings
		tmpWord = (char *) calloc(sizeof(char), 1024 + 1);
		
		while (messageLength != 0) {
			// determine number of bytes to read this time around
			// lesser of 1024 or the number of byes left to read
			// in this word
			bytesToRead = messageLength > 1024 ? 1024 : messageLength;
			
			// read iBytesToRead from the socket
			bytesRead = read(fdSock, tmpWord, bytesToRead);
			
			// terminate szTmpWord
			tmpWord[bytesRead] = 0;
			
			// concatenate szTmpWord to szRetWord
			strWordOut += tmpWord;
			
			// subtract the number of bytes we just read from iLen
			messageLength -= bytesRead;
		}		
		
		// deallocate szTmpWord
		delete [] tmpWord;
		
		DEBUG ? printf("Word = %s\n", strWordOut.c_str()) : 0;
	} 
}

/********************************************************************
 * Read a Sentence from the socket
 * A Sentence struct is returned
 ********************************************************************/
void MikrotikAPI::ReadSentence(Sentence &sentenceOut)
{
	DEBUG ? printf("ReadSentence\n") : 0;
	
	sentenceOut.Clear();
	
	string strWord;
	ReadWord(strWord);
	while (!strWord.empty()) {
		sentenceOut.AddWord(strWord);
		
		// check to see if we can get a return value from the API
		if (strWord.find("!done") != string::npos) {
			DEBUG ? printf("return Sentence contains !done\n") : 0;
			sentenceOut.SetReturnType(DONE);
		} else if (strWord.find("!trap") != string::npos) {
			DEBUG ? printf("return Sentence contains !trap\n") : 0;
			sentenceOut.SetReturnType(TRAP);
		} else if (strWord.find("!fatal") != string::npos) {
			DEBUG ? printf("return Sentence contains !fatal\n") : 0;
			sentenceOut.SetReturnType(FATAL);
		}
		
		ReadWord(strWord);
	}
	
	// if any errors, get the next sentence
	if (sentenceOut.GetReturnType() == TRAP || sentenceOut.GetReturnType() == FATAL) {
		ReadSentence(sentenceOut);
	}
	
	if (DEBUG) {
		for (int i = 0; i < sentenceOut.Length(); ++i) {
			printf("stReturnSentence.szSentence[%d] = %s\n", i, sentenceOut[i].c_str());
		}
	}
}

/********************************************************************
 * Read Sentence Block from the socket...keeps reading sentences
 * until it encounters !done, !trap or !fatal from the socket
 ********************************************************************/
void MikrotikAPI::ReadBlock(Block &block)
{
	Sentence sentence;
    block.Clear();
	
	DEBUG ? printf("ReadBlock\n") : 0;
	
	do {
		ReadSentence(sentence);
		DEBUG ? printf("ReadSentence succeeded.\n") : 0;
		
		block.AddSentence(sentence);
		DEBUG ? printf("AddSentenceToBlock succeeded\n") : 0;
	} while (sentence.GetReturnType() == NONE);
	
	DEBUG ? printf("ReadBlock completed successfully\n") : 0;
}


/********************************************************************
 * MD5 helper function to convert an md5 hex char representation to
 * binary representation.
 ********************************************************************/
string MikrotikAPI::MD5ToBinary(const string &strHex)
{
	string strReturn;
	
	// 32 bytes in szHex?
	if (strHex.length() != 32) {
		return strReturn;
	}
	
	char binWork[3];
	for (int i = 0; i < 32; i += 2) {
		binWork[0] = strHex[i];
		binWork[1] = strHex[i + 1];
		binWork[2] = 0;
		
		DEBUG ? printf("binWork = %s\n", binWork) : 0;
		
		strReturn[i / 2] = HexStringToChar(binWork);
	}
	
	return strReturn;
}

/********************************************************************
 * MD5 helper function to calculate and return hex representation
 * of an MD5 digest stored in binary.
 ********************************************************************/
string MikrotikAPI::MD5DigestToHexString(md5_byte_t *binaryDigest)
{
	char strReturn[32 + 1];
	
	for (int i = 0; i < 16; ++i) {
		sprintf(strReturn + i * 2, "%02x", binaryDigest[i]);
	}
	
	return strReturn;
}

/********************************************************************
 * Quick and dirty function to convert hex string to char...
 * the toConvert string MUST BE 2 characters + null terminated.
 ********************************************************************/
char MikrotikAPI::HexStringToChar(const string &hexToConvert)
{
	unsigned int accumulated = 0;
	char char0[2] = {hexToConvert[0], 0};
	char char1[2] = {hexToConvert[1], 0};
	
	// look @ first char in the 16^1 place
	if (hexToConvert[0] == 'f' || hexToConvert[0] == 'F') {
		accumulated += 16*15;
	} else if (hexToConvert[0] == 'e' || hexToConvert[0] == 'E') {
		accumulated += 16*14;
	} else if (hexToConvert[0] == 'd' || hexToConvert[0] == 'D') {
		accumulated += 16*13;
	} else if (hexToConvert[0] == 'c' || hexToConvert[0] == 'C') {
		accumulated += 16*12;
	} else if (hexToConvert[0] == 'b' || hexToConvert[0] == 'B') {
		accumulated += 16*11;
	} else if (hexToConvert[0] == 'a' || hexToConvert[0] == 'A') {
		accumulated += 16*10;
	} else {
		accumulated += 16 * atoi(char0);
	}
	
	// now look @ the second car in the 16^0 place
	if (hexToConvert[1] == 'f' || hexToConvert[1] == 'F') {
		accumulated += 15;
	} else if (hexToConvert[1] == 'e' || hexToConvert[1] == 'E') {
		accumulated += 14;
	} else if (hexToConvert[1] == 'd' || hexToConvert[1] == 'D') {
		accumulated += 13;
	} else if (hexToConvert[1] == 'c' || hexToConvert[1] == 'C') {
		accumulated += 12;
	} else if (hexToConvert[1] == 'b' || hexToConvert[1] == 'B') {
		accumulated += 11;
	} else if (hexToConvert[1] == 'a' || hexToConvert[1] == 'A') {
		accumulated += 10;
	} else {
		accumulated += atoi(char1);
	}
	
	DEBUG ? printf("%d\n", accumulated) : 0;
	return (char)accumulated;	
}

/********************************************************************
 * Test whether or not this system is little endian at RUNTIME
 * Courtesy: http://download.osgeo.org/grass/grass6_progman/endian_8c_source.html
 ********************************************************************/
bool MikrotikAPI::IsLittleEndian()
{
	union {
		int testWord;
		char testByte[sizeof(int)];
	} endianTest;
	
	endianTest.testWord = 1;
	
	if (endianTest.testByte[0] == 1)
		return 1;               /* true: little endian */
	
	return 0;                   /* false: big endian */
}

See also